poj 3744 概率dp 快速幂 注意排序 难度:2
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 5304 | Accepted: 1455 |
Description
Input
Each test case contains two lines.
The First line of each test case is N (1 ≤ N ≤ 10) and p (0.25 ≤ p ≤ 0.75) seperated by a single blank, standing for the number of mines and the probability to walk one step.
The Second line of each test case is N integer standing for the place of N mines. Each integer is in the range of [1, 100000000].
Output
Sample Input
1 0.5
2
2 0.5
2 4
Sample Output
0.5000000
0.2500000
*/
/*
思路:
1.因为只有两种转移方式,即向前跳一步(p)或者向前跳两步(1-p),所以转移是单向的,
转移方程:dp[i]=dp[i-1]*p+dp[i-2]*(1-p),如果是踩到地雷的情况就不能再继续转移了,加入答案中
2.最多走1e8,也就转移1e8下,但是还是悬在边界上,因为n小,步数小,用快速幂增加速度
3.注意排序,在这里被坑了
*/ #include <cstdio>
#include <algorithm>
using namespace std;
int lame[11];
void copy(double des[2][2],double src[2][2]){
des[0][0]=src[0][0];des[0][1]=src[0][1];des[1][0]=src[1][0];des[1][1]=src[1][1];
}
void multi(double l[2][2],double r[2][2],double ans[2][2]){
double temp[4];
temp[0]=l[0][0]*r[0][0]+l[0][1]*r[1][0];
temp[1]=l[0][0]*r[0][1]+l[0][1]*r[1][1];
temp[2]=l[1][0]*r[0][0]+l[1][1]*r[1][0];
temp[3]=l[1][0]*r[0][1]+l[1][1]*r[1][1];
ans[0][0]=temp[0];ans[0][1]=temp[1];ans[1][0]=temp[2];ans[1][1]=temp[3];
}
void pow(double pro[2][2],double faim[2][2],int times){
double base[2][2] ;
copy(base,pro);
while(times>0){
if((times&1)==1)multi(base,faim,faim);
multi(base,base,base);
times>>=1;
}
}
int main(){
int n;
double p;
while(scanf("%d",&n)==1){
scanf("%lf",&p);
for(int i=0;i<n;i++)scanf("%d",lame+i);
sort(lame,lame+n);
double faim[2][2];faim[1][0]=faim[0][1]=faim[1][1]=0;faim[0][0]=1;
double pro[2][2];pro[0][0]=p;pro[0][1]=1-p;pro[1][0]=1;pro[1][1]=0;
int f=1;
for(int i=0;i<n;i++){
pow(pro,faim,lame[i]-f);
faim[0][0]=0;
f=lame[i];
}
faim[1][0]*=(1-p);
printf("%.7f\n",faim[1][0]);
}
return 0;
}
poj 3744 概率dp 快速幂 注意排序 难度:2的更多相关文章
- POJ 3744 【矩阵快速幂优化 概率DP】
搞懂了什么是矩阵快速幂优化.... 这道题的重点不是DP. /* 题意: 小明要走某条路,按照个人兴致,向前走一步的概率是p,向前跳两步的概率是1-p,但是地上有地雷,给了地雷的x坐标,(一维),求小 ...
- Scout YYF I POJ - 3744(概率dp + 矩阵快速幂)
题意: 一条路上有n个地雷,你从1开始走,单位时间内有p的概率走一步,1-p的概率走两步,问安全通过这条路的概率 解析: 很容易想到 dp[i] = p * dp[i-1] + (1 - p) * d ...
- poj 3744 概率dp+矩阵快速幂
题意:在一条布满地雷的路上,你现在的起点在1处.在N个点处布有地雷,1<=N<=10.地雷点的坐标范围:[1,100000000]. 每次前进p的概率前进一步,1-p的概率前进1-p步.问 ...
- 【bzoj4870】[Shoi2017]组合数问题 dp+快速幂/矩阵乘法
题目描述 输入 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ r < k ≤ 50, 2 ≤ p ≤ 2^30 − 1 输出 一行一个整数 ...
- BZOJ.4818.[SDOI2017]序列计数(DP 快速幂)
BZOJ 洛谷 竟然水过了一道SDOI!(虽然就是很水...) 首先暴力DP,\(f[i][j][0/1]\)表示当前是第\(i\)个数,所有数的和模\(P\)为\(j\),有没有出现过质数的方案数. ...
- Scout YYF I (概率+矩阵快速幂)
YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into the enemy's ba ...
- [CSP-S模拟测试]:山洞(DP+快速幂)
题目传送门(内部题17) 输入格式 一行两个整数$n$,$m$,含义如题面. 输出格式 一行一个整数,表示方案数模$1e9+7$. 样例 样例输入1: 4 6 样例输出1: 样例输入2: 707 18 ...
- poj 3070 Fibonacci (矩阵快速幂乘/模板)
题意:给你一个n,输出Fibonacci (n)%10000的结果 思路:裸矩阵快速幂乘,直接套模板 代码: #include <cstdio> #include <cstring& ...
- poj 3070 Fibonacci 矩阵快速幂
Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. F ...
随机推荐
- Python网络爬虫学习总结
1.检查robots.txt 让爬虫了解爬取该网站时存在哪些限制. 最小化爬虫被封禁的可能,而且还能发现和网站结构相关的线索. 2.检查网站地图(robots.txt文件中发现的Sitemap文件) ...
- docker——核心实现技术
作为一种容器虚拟化技术,Docker深度应用了操作系统的多项底层支持技术. 早期版本的Docker是基于已经成熟的Linux Container(LXC)技术实现的.自从0.9版本起,Docker逐渐 ...
- FindBugs详解
欢迎和大家交流技术相关问题: 邮箱: jiangxinnju@163.com 博客园地址: http://www.cnblogs.com/jiangxinnju GitHub地址: https://g ...
- Mysql在InnoDB引擎下索引失效行级锁变表锁案例
先做好准备,创建InnoDB引擎数据表,并添加了相应的索引 DROP TABLE IF EXISTS `innodb_lock`; CREATE TABLE `innodb_lock` ( `a` ) ...
- awk处理nmap扫描结果
接到个任务,要对大量的主机ip进行扫描: 扫描加过滤脚本贴到底下 #!/bin/bash ### use nmap scan aliyun echo "********Start scan* ...
- 20145329 《网络对抗技术》MS08_067远程漏洞攻击
MS08_067远程漏洞攻击:shell 实现攻击的前提是:攻击机和靶机在同一个网段下,首先将kali的ip改为与winxp的ip一样,二者能ping通 两台虚拟机: kali ip:192.168. ...
- 20155201 实验五《Java面向对象程序设计》实验报告
20155201 实验五<Java面向对象程序设计>实验报告 一.实验内容 1. 数据结构应用 2. 结对编程:利用IDEA完成网络编程任务,1人负责客户端,1人负责服务器 3. 密码结对 ...
- HeyWeGo第四周项目总结
HeyWeGo第四周项目总结 项目内容 使用java程序开发一款扫雷游戏 游戏项目规划: 确定游戏中方块格子的个数 确定游戏中地雷的个数(初始10个),完成布雷 计算每个方块周围的雷数,在方块周围本身 ...
- A8逻辑篇1.点亮一个LED(S5PV210.A8)
一.虚拟机安装好后,我们用Fedora 双击.vmx文件,将会在虚拟机中打开 相应的生成: 这些文件 二.进入虚拟机页面 等待启动 账号选择其他 用户名:root 密码:111111 设置页面大小: ...
- 解决use -D_SCL_SECURE_NO_WARNINGS的问题
加入预处理器(项目属性----C/C++----预处理----预处理器定义): _SCL_SECURE_NO_WARNINGS