UVA 11235 Frequent values 线段树/RMQ
vjudge 上题目链接:UVA 11235
*******************************************************大白书上解释************************************************************
题目大意:给出一个非降序排列的整数数组 a1,a2,a3,...,an,你的任务是对于一系列询问 (i, j),回答 ai,ai+1,...,aj 中出现次数最多的值所出现的次数。
输入格式:包含多组数据。每组数据第一行为两个整数 n 和 q(1 <= n, q <= 100000)。第二行包含 n 个非降序排列的整数 a1,a2,a3,...,an(-100000 <= ai <= 100000)。以下 q 行每行包含两个整数 i 和 j(1 <= i <= j <= n),输入结束标志为 n = 0。
输出格式:对于每个查询,输出查询结果。
分析:应注意到整个数组是非降序的,所有相等元素都会聚集到一起。这样就可以把整个数组进行游程编码(Run Length Encoding, RLE)。比如 -1,1,1,2,2,2,4 就可以编码成 (-1, 1), (1, 2), (2, 3), (4, 1),其中 (a, b) 表示有 b 个连续的 a。用 value[i] 和 count[i] 分别表示第 i 段的数值和出现次数,num[p], left[p], right[p] 分别表示位置 p 所在段的编号和左右端点位置,则在下图的情况,每次查询(L,R)的结果为以下 3 个部分的最大值:从 L 到 L 所在段的结束处的元素个数(即 right[L] - L + 1)、从 R 所在段的开始处到 R 处的元素个数(即 R - left[R] + 1)、中间第 num[L] + 1 段到第 num[R] - 1 段的 count 的最大值,如图 3-8 所示。
*******************************************************大白书上解释结束************************************************************
我的理解:
预处理过程主要就 3 个数组:seq[] 就是上述提到的 count[] 数组,记录 seq[i] 第 i 段连续整数的出现次数;pos[i] 表示原数组的第 i 个元素在 seq[] 中处于第几段;preSum[] 则是 seq 数组的前缀和,用于快速求出第 L 段和第 R 段的元素个数。这 3 个数组准备好后,接下来就是求区间最值的问题而已,线段树或者 RMQ 都可以,二者复杂度一样,时间差异可以忽略不计,只不过我更熟悉线段树,感觉 RMQ 的边界有点不容易处理而已。
首先是线段树的代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <iostream>
using namespace std;
#define For(i,s,t) for(int i = (s); i < (t); ++i)
#define root int rt, int l, int r
#define ll(rt) ((rt) << 1)
#define rr(rt) (ll(rt) | 1)
#define makemid int mid = (l + r >> 1)
#define lson ll(rt), l, mid
#define rson rr(rt), mid + 1, r
const int N = ; int c[N];
vector<int> seq, preSum;
int pos[N] = {,}; int Max[N << ]; inline void pushup(int rt) { Max[rt] = max(Max[ll(rt)], Max[rr(rt)]); } void build(root)
{
if(l == r) {
Max[rt] = seq[l - ];
return;
}
makemid;
build(lson);
build(rson);
pushup(rt);
} int ql, qr;
int query(root)
{
if(ql <= l && r <= qr) {
return Max[rt];
}
makemid;
int ret = ;
if(ql <= mid) {
ret = max(ret, query(lson));
}
if(qr > mid) {
ret = max(ret, query(rson));
}
return ret;
} int main()
{
int n,q;
while(~scanf("%d",&n), n) {
scanf("%d", &q);
seq.clear();
scanf("%d", c);
int curValue = c[], curNum = ;
For(i, , n) {
scanf("%d", c + i);
if(c[i] == curValue) {
++curNum;
pos[i] = pos[i - ];
} else {
seq.push_back(curNum);
curValue = c[i];
curNum = ;
pos[i] = pos[i - ] + ;
}
}
seq.push_back(curNum);
preSum.clear();
preSum.push_back(seq[]);
int len = seq.size();
For(i, , len) {
preSum.push_back(preSum[i - ] + seq[i]);
}
build(, , len);
int x,y;
while(q--) {
scanf("%d %d",&x,&y);
--x; --y;
if(pos[x] == pos[y]) {
printf("%d\n", y - x + );
continue;
}
int lmax = preSum[pos[x]] - x;
int rmax = y + - preSum[pos[y] - ];
int res = max(lmax, rmax);
if(pos[y] == pos[x] + ) {
printf("%d\n", res);
} else {
ql = pos[x] + + ;
qr = pos[y] - + ;
printf("%d\n", max(res, query(, , len)));
}
}
}
return ;
}
然后是 RMQ 的:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <iostream>
using namespace std;
#define For(i,s,t) for(int i = (s); i < (t); ++i)
const int N = ; int c[N];
vector<int> seq, preSum;
int pos[N] = {,}; int d[N][];
inline void init(int n)
{
For(i, , n) {
d[i][] = seq[i];
}
for(int j = ; ( << j) < n; ++j) {
for(int i = ; i + ( << j) - < n; ++i) {
d[i][j] = max(d[i][j - ], d[i + ( << (j - ))][j - ]);
}
}
} inline int rmq(int L, int R)
{
int k = , len = R - L + ;
while(( << (k + )) < len) ++k;
return max(d[L][k], d[R - ( << k) + ][k]);
} int main()
{
int n,q;
while(~scanf("%d",&n), n) {
scanf("%d", &q);
seq.clear();
scanf("%d", c);
int curValue = c[], curNum = ;
For(i, , n) {
scanf("%d", c + i);
if(c[i] == curValue) {
++curNum;
pos[i] = pos[i - ];
} else {
seq.push_back(curNum);
curValue = c[i];
curNum = ;
pos[i] = pos[i - ] + ;
}
}
seq.push_back(curNum);
preSum.clear();
preSum.push_back(seq[]);
int len = seq.size();
For(i, , len) {
preSum.push_back(preSum[i - ] + seq[i]);
}
init(len);
int x,y;
while(q--) {
scanf("%d %d",&x,&y);
--x; --y;
if(pos[x] == pos[y]) {
printf("%d\n", y - x + );
continue;
}
int lmax = preSum[pos[x]] - x;
int rmax = y + - preSum[pos[y] - ];
int res = max(lmax, rmax);
if(pos[y] == pos[x] + ) {
printf("%d\n", res);
} else {
int ql = pos[x] + ;
int qr = pos[y] - ;
printf("%d\n", max(res, rmq(ql, qr)));
}
}
}
return ;
}
UVA 11235 Frequent values 线段树/RMQ的更多相关文章
- RMQ算法 以及UVA 11235 Frequent Values(RMQ)
RMQ算法 简单来说,RMQ算法是给定一组数据,求取区间[l,r]内的最大或最小值. 例如一组任意数据 5 6 8 1 3 11 45 78 59 66 4,求取区间(1,8) 内的最大值.数据量小 ...
- UVA 11235 Frequent values(RMQ)
Frequent values TimeLimit:3000Ms , ... , an in non-decreasing order. In addition to that, you are gi ...
- POJ 3368 Frequent values 线段树与RMQ解法
题意:给出n个数的非递减序列,进行q次查询.每次查询给出两个数a,b,求出第a个数到第b个数之间数字的最大频数. 如序列:-1 -1 1 1 1 1 2 2 3 第2个数到第5个数之间出现次数最多的是 ...
- UVA - 11235 Frequent values
2007/2008 ACM International Collegiate Programming Contest University of Ulm Local Contest Problem F ...
- [POJ] 3368 / [UVA] 11235 - Frequent values [ST算法]
2007/2008 ACM International Collegiate Programming Contest University of Ulm Local Contest Problem F ...
- HDOJ-1806 ( Frequent values ) 线段树区间合并
http://acm.hdu.edu.cn/showproblem.php?pid=1806 线段树维护区间出现频率最高的出现次数.为了维护上者,需要维护线段前后缀的出现次数,当和其他线段在端点处的字 ...
- POJ3368(Frequent values)--线段树
题目在这里 3368 Accepted 7312K 1829MS C++ 6936B 题意为给你一组数据,再给定一组区间,问你这个区间内出现次数最多的元素的次数是多少. 我还记得这题是学校校赛基础的题 ...
- UVA 11235 Frequent Values ---RMQ
大白书上的例题,具体讲解见大白书,最好用用一个Log数组直接求k,这样就是纯O(1)了 #include <iostream> #include <cstdio> #inclu ...
- UVa 11235 Frequent values (RMQ && 区间出现最多次的数的次数)
题意 : 给出一个长度为 n 的不降序序列,并且给出 q 个形如(L, R)的问询,问你这个区间出现的最多次的数的次数. 分析 : 很自然的想到将区间“缩小”,例如1 1 2 3 3 3就可以变成2 ...
随机推荐
- laravel 控制器中使用 try catch
需要操作数据库时,当数据字段不一致,mysql报错,控制程序,需要使用try catch 下面是使用案例 $morder['morder_time'] = time();//在这里使用try catc ...
- VS2015 安装包
http://download.microsoft.com/download/D/C/9/DC99C86F-5E93-4F77-AF7A-05AAC9BD8B72/vs2015.1.ent_chs.i ...
- 学习笔记之Android
Android 开发专区 - 开源中国社区 http://www.oschina.net/android 探索 Android Studio | Android Studio https://deve ...
- PHP CRC16 校验码的算法怎么使用
PHP CRC16 校验码的算法如何使用最近用到CRC16, 我现在就是要把 010301180001 算出CRC16的校验码,通过其他工具,可以得到 校验码是 05F1 最后完整的代码就是 0103 ...
- win和linux下控制台界面中停顿X秒的方式
win localhost > nul linux
- tomcat下载安装和配置
Tomcat服务器 1.Web开发中的常见概念 (1)B/S系统和C/S系统 Brower/Server:浏览器 服务器 系统 ----- 网站 Client/Server:客户端 服务器 系统 -- ...
- 读书笔记--大规模web服务开发技术
总评 这本书是日本一个叫hatena的大型网站的CTO写的,通过hatena网站从小到大的演进来反应一个web系统从小到大过程中的各种系统和技术架构变迁,比较接地气. 书的内容 ...
- Java内存分配及值、引用的传递
关于堆栈的内容网上已经有很多资料了,这是我找的加上自己理解的一篇说明文: 一.内存区域类型 1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制: 2. 栈:存放基本类型的变量数 ...
- Maven(四-1) Maven的配置文件settings.xml
转载于:http://www.cnblogs.com/yakov/archive/2011/11/26/maven2_settings.html 概览 当Maven运行过程中的各种配置,例如pom.x ...
- SpringMVC 学习笔记(处理器映射器的配置)
前端控制器(dispatchServlet) 在web.xml中配置前端控制器,在服务器启动时就被创建,用来对请求和响应进行接收 和 分发处理,其在配置时可以设置一个初始化参数,用来定位SpringM ...