NSOJ 4621 posters (离散化+线段树)
posters
64位整型: Java 类名:
题目描述
The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:
• Every candidate can place exactly one poster on the wall.
• All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
• The wall is divided into segments and the width of each segment is one byte.
• Each poster must completely cover a contiguous number of wall segments.
They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections.
Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall.
输入
The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers li and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri.
输出
For each input data set print the number of visible posters after all the posters are placed.
The picture below illustrates the case of the sample input.
http://acm.pku.edu.cn/JudgeOnline/images/2528_1.jpg
样例输入
1
5
1 4
2 6
8 10
3 4
7 10
样例输出
4
来源
题意:
在一面长墙上贴n张海报,第 i 张海报可以从 li 贴到 ri ,海报高低都相等(可以理解为一维模型),按照给出的方法依次粘贴,问最终还能看见海报有几张。
分析:
起始点与终止点取值范围(1 <= i <= n, 1 <= li <= ri <= 10000000) 然而 我们用到的只有(1 <= n <= 10000)个,只用到了(1/1000)*2的点,要保存整个状态,开10000000的整形数组果断超内存,运用离散化思想用20000的整形数组便能保存整个状态。
如果按照一般的方法,你在一张海报区域对应范围内 逐个赋值保存状态,离散化后最坏的情况依然为2*c*n2果断超时,这时就要用到线段树来优化了,线段树用到二分思想故最坏情况为2*c*nlogn,(c的范围没有给出,索性考虑在内,但c应该也不会太大)。
#include <iostream>
#include <algorithm>
#include <map> //映射->离散化
#include <set> //自动去重
using namespace std;
#define MAXN 10005
map <int,int> M;
struct node{
int left;
int right;
int index;
node(): left(), right(), index() {}
} Tree[MAXN * ], input[MAXN]; int point[MAXN * ], sum;
set <int> visible; void BuildTree(int root, int left, int right){ //建立线段树
Tree[root].left = left;
Tree[root].right = right;
Tree[root].index = -;
if (left + < right){
int mid = (left + right) / ;
BuildTree(root * , left, mid);
BuildTree(root * + , mid, right);
}
} void UpdateTree(int k, int a, int b, int index){
if (Tree[k].left == a && Tree[k].right == b){
Tree[k].index = index;
return;
}
if (Tree[k].index != -){
Tree[ * k].index = Tree[ * k + ].index = Tree[k].index;
Tree[k].index = -;
}
int mid = (Tree[k].left + Tree[k].right) / ;
if (b <= mid)
UpdateTree( * k, a, b, index);
else if (a >= mid)
UpdateTree( * k + , a, b, index);
else {
UpdateTree( * k, a, Tree[ * k].right, index);
UpdateTree( * k + , Tree[ * k + ].left, b, index);
}
}
void SearchTree(int k) { //便历
if (Tree[k].index != -)
visible.insert(Tree[k].index);
else if (Tree[k].right > Tree[k].left + ) {
SearchTree( * k);
SearchTree( * k + );
}
}
int main() {
int c, n;
cin >> c;
while (c--) {
cin >> n;
sum = ;
for (int i = ; i < n; i++) {
cin >> input[i].left >> input[i].right;
input[i].left--;
point[sum++] = input[i].left;
point[sum++] = input[i].right;
}
sort(point, point + sum);
sum = unique(point, point + sum) - point;//去重后共sum个点
M.clear();
for(int i=;i<sum;i++){
M[point[i]]=i; //映射
}
BuildTree(, , sum - );
for (int i = ; i < n; i++) {
UpdateTree(, M[input[i].left], M[input[i].right], i);
}
visible.clear();
SearchTree();
cout << visible.size() << endl;
}
return ;
}
NSOJ 4621 posters (离散化+线段树)的更多相关文章
- 【POJ】2528 Mayor's posters ——离散化+线段树
Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Description The citizens of Bytetown, A ...
- Mayor's posters(离散化线段树)
Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 54067 Accepted: 15713 ...
- POJ 2528 Mayor's posters 离散化+线段树
题目大意:给出一些海报和贴在墙上的区间.问这些海报依照顺序贴完之后,最后能后看到多少种海报. 思路:区间的范围太大,然而最多仅仅会有10000张海报,所以要离散化. 之后用线段树随便搞搞就能过. 关键 ...
- 南阳理工 题目9:posters(离散化+线段树)
posters 时间限制:1000 ms | 内存限制:65535 KB 难度:6 描述 The citizens of Bytetown, AB, could not stand that ...
- Mayor's posters (离散化线段树+对lazy的理解)
题目 题意: n(n<=10000) 个人依次贴海报,给出每张海报所贴的范围 li,ri(1<=li<=ri<=10000000) .求出最后还能看见多少张海报. 思路: 由于 ...
- SGU 180 Inversions(离散化 + 线段树求逆序对)
题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=180 解题报告:一个裸的求逆序对的题,离散化+线段树,也可以用离散化+树状数组.因为 ...
- hpu校赛--雪人的高度(离散化线段树)
1721: 感恩节KK专场——雪人的高度 时间限制: 1 Sec 内存限制: 128 MB 提交: 81 解决: 35 [提交][状态][讨论版] 题目描述 大雪过后,KK决定在春秋大道的某些区间 ...
- 【BZOJ1645】[Usaco2007 Open]City Horizon 城市地平线 离散化+线段树
[BZOJ1645][Usaco2007 Open]City Horizon 城市地平线 Description Farmer John has taken his cows on a trip to ...
- 【bzoj4636】蒟蒻的数列 离散化+线段树
原文地址:http://www.cnblogs.com/GXZlegend/p/6801379.html 题目描述 蒟蒻DCrusher不仅喜欢玩扑克,还喜欢研究数列 题目描述 DCrusher有一个 ...
- 离散化+线段树/二分查找/尺取法 HDOJ 4325 Flowers
题目传送门 题意:给出一些花开花落的时间,问某个时间花开的有几朵 分析:这题有好几种做法,正解应该是离散化坐标后用线段树成端更新和单点询问.还有排序后二分查找询问点之前总花开数和总花凋谢数,作差是当前 ...
随机推荐
- 《JavaWeb从入门到改行》过滤器学习笔记
>"; display: block; height: 0; clear: both; visibility: hidden; } #sitemap, #sitemap ul{disp ...
- python学习之老男孩python全栈第九期_day021知识点总结——包、异常处理
一. 包 # 把解决一类问题的模块放在同一个文件夹里 -- 包 # 创建目录代码# import os# os.makedirs('glance/api')# os.makedirs('glance/ ...
- sql: MySQL and Microsoft SQL Server Stored Procedures IN, OUT using csharp code
MySQL存储过程: #插入一条返回值涂聚文注 DELIMITER $$ DROP PROCEDURE IF EXISTS `geovindu`.`proc_Insert_BookKindOut` $ ...
- SublimeText 批量清除空行
sublimeText 编辑器批量清除空行: 1.CTRL+H 打开 replace 功能 2.选择 Regular expression 功能 3.批两替换 点击replace All
- Linux时间同步+国内常用的NTP服务器地址
当Linux服务需要时间戳的时候,时间同步就显得十分重要.这里介绍下,最近我使用的一个同步命令. # ntpdate s1a.time.edu.cn 国内常用的NTP地址 210.72.145.44 ...
- OFDM正交频分复用---基础入门图示
@(162 - 信号处理) 整理转载自:给小白图示讲解OFDM 下面以图示为主讲解OFDM,以"易懂"为第一要义. 注:下面的讨论如果不做说明,均假设为理想信道. *** 一张原理 ...
- Android解析WindowManager(二)Window的属性
前言 在上一篇文章我们学习了WindowManager体系,了解了Window和WindowManager之间的关系,这一篇我们接着来学习Window的属性. 1.概述 上一篇文章中我们讲过了Wind ...
- Android深入四大组件(四)Android8.0 根Activity启动过程(前篇)
前言 在几个月前我写了Android深入四大组件(一)应用程序启动过程(前篇)和Android深入四大组件(一)应用程序启动过程(后篇)这两篇文章,它们都是基于Android 7.0,当我开始阅读An ...
- linux 服务器 keras 深度学习环境搭建
感慨: 程序跑不起来,都是环境问题. 1. 安装Anaconda https://blog.csdn.net/gdkyxy2013/article/details/79463859 2. 在 Anac ...
- 如何激活 Trend Micro Deep Security Agent
Deep Security 即服务包括反恶意软件保护.防火墙.入侵防御系统和完整性监视.Trend Micro Deep Security Agent (DSA) 可以配合 Deep Security ...