图像特征的类型通常指边界、角点(兴趣点)、斑点(兴趣区域)。角点就是图像的一个局部特征,应用广泛。harris角点检测是一种直接基于灰度图像的角点提取算法,稳定性高,尤其对L型角点检测精度高,但由于采用了高斯滤波,运算速度相对较慢,角点信息有丢失和位置偏移的现象,而且角点提取有聚簇现象。

 

 

#include "stdafx.h"

#include <stdio.h>
#include <iostream>
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp" using namespace cv; void readme(); /** @function main */
int main( int argc, char** argv )
{
/*
if( argc != 3 )
{ readme(); return -1; } */ Mat img_1 = imread( "zhang.jpg", CV_LOAD_IMAGE_GRAYSCALE );
Mat img_2 = imread( "guo.jpg", CV_LOAD_IMAGE_GRAYSCALE ); if( !img_1.data || !img_2.data )
{ std::cout<< " --(!) Error reading images " << std::endl; return -1; } //-- Step 1: Detect the keypoints using SURF Detector
int minHessian = 400; SurfFeatureDetector detector( minHessian ); std::vector<KeyPoint> keypoints_1, keypoints_2; detector.detect( img_1, keypoints_1 ); // 特征点向量
detector.detect( img_2, keypoints_2 ); //-- Draw keypoints
Mat img_keypoints_1; Mat img_keypoints_2; drawKeypoints( img_1, keypoints_1, img_keypoints_1, Scalar::all(-1), DrawMatchesFlags::DEFAULT );
drawKeypoints( img_2, keypoints_2, img_keypoints_2, Scalar::all(-1), DrawMatchesFlags::DEFAULT ); //-- Show detected (drawn) keypoints
imshow("Keypoints 1", img_keypoints_1 );
imshow("Keypoints 2", img_keypoints_2 ); waitKey(0); return 0;
} /** @function readme */
void readme()
{ std::cout << " Usage: ./SURF_detector <img1> <img2>" << std::endl; }

 

检测keypoints点的检测器是SURF,获取描述子也是用到SURF来描述,而用到的匹配器是FlannBased,最后通过findHomography寻找单映射矩阵,perspectiveTransform获得最终的目标

findHomography 函数是求两幅图像的单应性矩阵,它是一个3*3的矩阵

#include "stdafx.h"
#include <stdio.h>
#include <iostream>
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <opencv2\calib3d\calib3d.hpp> using namespace cv; void readme(); int main( int argc, char** argv )
{ /*
if( argc != 3 )
{ return -1; }*/ Mat img_1 = imread( "test1.jpg", CV_LOAD_IMAGE_GRAYSCALE );
Mat img_2 = imread( "test2.jpg", CV_LOAD_IMAGE_GRAYSCALE ); if( !img_1.data || !img_2.data )
{ return -1; } //-- Step 1: Detect the keypoints using SURF Detector
int minHessian = 400; SurfFeatureDetector detector( minHessian ); std::vector<KeyPoint> keypoints_1, keypoints_2; detector.detect( img_1, keypoints_1 );
detector.detect( img_2, keypoints_2 ); // 角点集合 —— 数目确定 //-- Step 2: Calculate descriptors (feature vectors)
SurfDescriptorExtractor extractor; // 角点描述子 Mat descriptors_1, descriptors_2; extractor.compute( img_1, keypoints_1, descriptors_1 );
extractor.compute( img_2, keypoints_2, descriptors_2 ); /*
//-- Step 3: Matching descriptor vectors with a brute force matcher
BruteForceMatcher< L2<float> > matcher;
std::vector< DMatch > matches;
matcher.match( descriptors_1, descriptors_2, matches ); //-- Draw matches
Mat img_matches;
drawMatches( img_1, keypoints_1, img_2, keypoints_2, matches, img_matches ); //-- Show detected matches
imshow("Matches", img_matches );
*/ //-- Step 3: Matching descriptor vectors using FLANN matcher
FlannBasedMatcher matcher;
std::vector< DMatch > matches;
matcher.match( descriptors_1, descriptors_2, matches ); double max_dist = 0; double min_dist = 100; //-- Quick calculation of max and min distances between keypoints
for( int i = 0; i < descriptors_1.rows; i++ )
{
double dist = matches[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
} printf("-- Max dist : %f \n", max_dist );
printf("-- Min dist : %f \n", min_dist ); //-- Draw only "good" matches (i.e. whose distance is less than 2*min_dist ) —— 阈值
//-- PS.- radiusMatch can also be used here.
std::vector< DMatch > good_matches; for( int i = 0; i < descriptors_1.rows; i++ )
{
if( matches[i].distance < 2*min_dist )
{
good_matches.push_back( matches[i]); // 在匹配源头限制
}
} //-- Draw only "good" matches
Mat img_matches;
drawMatches( img_1, keypoints_1, img_2, keypoints_2,
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS ); //-- Show detected matches
imshow( "Good Matches", img_matches ); //-- Localize the object from img_1 in img_2
std::vector<Point2f> obj;
std::vector<Point2f> scene; for( int i = 0; i < good_matches.size(); i++ )
{
//-- Get the keypoints from the good matches
obj.push_back( keypoints_1[ good_matches[i].queryIdx ].pt );
scene.push_back( keypoints_2[ good_matches[i].trainIdx ].pt );
} Mat H = findHomography( obj, scene, CV_RANSAC ); // findHomography 函数是求两幅图像的单应性矩阵,它是一个3*3的矩阵 //-- Get the corners from the image_1 ( the object to be "detected" )
Point2f obj_corners[4] = { cvPoint(0,0), cvPoint( img_1.cols, 0 ), cvPoint( img_1.cols, img_1.rows ), cvPoint( 0, img_1.rows ) };
Point scene_corners[4]; //-- Map these corners in the scene ( image_2)
for( int i = 0; i < 4; i++ )
{
double x = obj_corners[i].x;
double y = obj_corners[i].y; double Z = 1./( H.at<double>(2,0)*x + H.at<double>(2,1)*y + H.at<double>(2,2) );
double X = ( H.at<double>(0,0)*x + H.at<double>(0,1)*y + H.at<double>(0,2) )*Z;
double Y = ( H.at<double>(1,0)*x + H.at<double>(1,1)*y + H.at<double>(1,2) )*Z;
scene_corners[i] = cvPoint( cvRound(X) + img_1.cols, cvRound(Y) );
} //-- Draw lines between the corners (the mapped object in the scene - image_2 )
line( img_matches, scene_corners[0], scene_corners[1], Scalar(0, 255, 0), 2 );
line( img_matches, scene_corners[1], scene_corners[2], Scalar( 0, 255, 0), 2 );
line( img_matches, scene_corners[2], scene_corners[3], Scalar( 0, 255, 0), 2 );
line( img_matches, scene_corners[3], scene_corners[0], Scalar( 0, 255, 0), 2 ); //-- Show detected matches
imshow( "Good Matches & Object detection", img_matches ); waitKey(0); return 0;
} /**
* @function readme
*/
void readme()
{ std::cout << " Usage: ./SURF_descriptor <img1> <img2>" << std::endl; }

利用findHomography函数利用匹配的关键点找出相应的变换,再利用perspectiveTransform函数映射点群。

 

转自:http://blog.csdn.net/yang_xian521/article/details/6901762

OPENCV(6) —— 角点检测的更多相关文章

  1. 【OpenCV】角点检测:Harris角点及Shi-Tomasi角点检测

    角点 特征检测与匹配是Computer Vision 应用总重要的一部分,这需要寻找图像之间的特征建立对应关系.点,也就是图像中的特殊位置,是很常用的一类特征,点的局部特征也可以叫做“关键特征点”(k ...

  2. OpenCV Shi-Tomasi角点检测子

    Shi-Tomasi角点检测子 目标 在这个教程中我们将涉及: 使用函数 goodFeaturesToTrack 来调用Shi-Tomasi方法检测角点. 理论 代码 这个教程的代码如下所示.源代码还 ...

  3. OpenCV Harris 角点检测子

    Harris 角点检测子 目标 本教程中我们将涉及: 有哪些特征?它们有什么用? 使用函数 cornerHarris 通过 Harris-Stephens方法检测角点. 理论 有哪些特征? 在计算机视 ...

  4. Opencv Shi-Tomasi角点检测

    #include <iostream>#include <opencv2/opencv.hpp> using namespace std;using namespace cv; ...

  5. Opencv Harris角点检测

    #include <iostream>#include <opencv2/opencv.hpp> using namespace std;using namespace cv; ...

  6. OpenCV 之 角点检测

    角点 (corners) 的定义有两个版本:一是 两条边缘的交点,二是 邻域内具有两个主方向的特征点. 一般而言,角点是边缘曲线上曲率为极大值的点,或者 图像亮度发生剧烈变化的点.例如,从人眼角度来看 ...

  7. opencv::自定义角点检测

    #include <opencv2/opencv.hpp> #include <iostream> #include <math.h> using namespac ...

  8. opencv笔记6:角点检测

    time:2015年10月09日 星期五 23时11分58秒 # opencv笔记6:角点检测 update:从角点检测,学习图像的特征,这是后续图像跟踪.图像匹配的基础. 角点检测是什么鬼?前面一篇 ...

  9. opencv: 角点检测源码分析;

    以下6个函数是opencv有关角点检测的函数 ConerHarris, cornoerMinEigenVal,CornorEigenValsAndVecs, preConerDetect, coner ...

随机推荐

  1. The Zen of Python, by Tim Peters

    Beautiful is better than ugly. Explicit is better than implicit. Simple is better than complex. Comp ...

  2. Tomcat + Mysql高并发配置优化

    1.Tomcat优化配置 (1)更改Tomcat的catalina.bat 将java变成server模式,增大jvm的内存,在文件开始位置增加 setJAVA_OPTS=-server -Xms10 ...

  3. 使用JNA,让java调用原生代码

    JNA定义: JNA:java Native Access,是SUN公司开发的基于JNI的框架.JNI使得Java可以调用原生的c或者c++代码. JNA与JNI(Java Native Interf ...

  4. [MST] Restore the Model Tree State using Hot Module Reloading when Model Definitions Change

    n this lesson, we will set up Hot Module Reloading(HMR), making it possible to load new definitions ...

  5. BNUOJ34980方(芳)格(哥)取数(好坑)

    方(芳)格(哥)取数 Time Limit: 3000ms Memory Limit: 65536KB 64-bit integer IO format: %lld      Java class n ...

  6. C语言之文件操作04——输入矩阵a,b,求乘积c,并打印a,b,c到文件

    //文件与数组结合 /* ================================================================= 题目:输入矩阵a,b,求乘积c,并打印a, ...

  7. C++ double转string类型以及MFC控件简单使用方法

    这两天项目须要,測试c++库里面内容.生成jar再给Android调用.我没有学过C++,如今開始记录C++简单使用方法.測试时候一般都是使用mfc程序来測试.要输入值.显示结果吗.我用的编译环境vs ...

  8. 怎样选择正确的HTTP状态码

    本文来源于我在InfoQ中文站翻译的文章.原文地址是:http://www.infoq.com/cn/news/2015/12/how-to-choose-http-status-code 众所周知. ...

  9. thinkphp5项目--个人博客(四)

    thinkphp5项目--个人博客(四) 项目地址 fry404006308/personalBlog: personalBloghttps://github.com/fry404006308/per ...

  10. [poj 2773] Happy 2006 解题报告 (二分答案+容斥原理)

    题目链接:http://poj.org/problem?id=2773 题目大意: 给出两个数m,k,要求求出从1开始与m互质的第k个数 题解: #include<algorithm> # ...