bzoj2124 等差子序列(树状数组+hash)
题意
给你一个1~n排列,问有没有一个等差数列(长度至少为3)
题解
我居然自己想到了正解。
但我最后写挂了,所以我又看了题解。
我们维护了一个以权值为下标的01序列。
我们扫描整个序列。对于每一个正在扫描的数,我们判断以这个数的权值作为对称点,01序列是否对称。
这个序列用权值树状数组维护就行。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
#define LL long long
const LL mod=1e9+;
int n,t;
const int N=;
LL pw[N],c1[N],c2[N];
int a[N];
int min(int a,int b){
if(a<b)return a;
else return b;
}
int lowbit(int x){
return x&(-x);
}
LL check1(int x){
LL ans=;
for(int i=x;i>=;i-=lowbit(i)){
ans=(ans+(c1[i]*pw[x-i])%mod)%mod;
}
return ans;
}
LL check2(int x){
LL ans=;
for(int i=x;i>=;i-=lowbit(i)){
ans=(ans+(c2[i]*pw[x-i])%mod)%mod;
}
return ans;
}
LL add1(int x){
for(int i=x;i<=n;i+=lowbit(i)){
c1[i]=(c1[i]+pw[i-x])%mod;
}
}
LL add2(int x){
for(int i=x;i<=n;i+=lowbit(i)){
c2[i]=(c2[i]+pw[i-x])%mod;
}
return ;
}
LL query1(int l,int r){
LL p=check1(l-),q=check1(r);
return ((q-p*pw[r-l+])%mod+mod)%mod;
}
LL query2(int l,int r){
LL p=check2(l-),q=check2(r);
return ((q-p*pw[r-l+])%mod+mod)%mod;
}
int main(){
scanf("%d",&t);
pw[]=;
for(int i=;i<=;i++)pw[i]=(pw[i-]*(LL))%mod;
for(int z=;z<=t;z++){
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d",&a[i]);
memset(c1,,sizeof(c1));memset(c2,,sizeof(c2));
for(int i=;i<=n;i++){
int x=a[i];
int len=min(n-x,x-);
if(len&&query1(x-len,x-)!=query2(n-x-len+,n-x)){printf("Y\n");break;}
add1(x);add2(n-x+);
if(i==n)printf("N\n");
}
}
return ;
}
bzoj2124 等差子序列(树状数组+hash)的更多相关文章
- 【BZOJ2124】等差子序列 树状数组维护hash值
[BZOJ2124]等差子序列 Description 给一个1到N的排列{Ai},询问是否存在1<=p1<p2<p3<p4<p5<…<pLen<=N ...
- CF452F Permutations/Luogu2757 等差子序列 树状数组、Hash
传送门--Luogu 传送门--Codeforces 如果存在长度\(>3\)的等差子序列,那么一定存在长度\(=3\)的等差子序列,所以我们只需要找长度为\(3\)的等差子序列.可以枚举等差子 ...
- bzoj 2124 等差子序列 树状数组维护hash+回文串
等差子序列 Time Limit: 3 Sec Memory Limit: 259 MBSubmit: 1919 Solved: 713[Submit][Status][Discuss] Desc ...
- bzoj 1669: [Usaco2006 Oct]Hungry Cows饥饿的奶牛【dp+树状数组+hash】
最长上升子序列.虽然数据可以直接n方但是另写了个nlogn的 转移:f[i]=max(f[j]+1)(a[j]<a[i]) O(n^2) #include<iostream> #in ...
- 【bzoj5157】[Tjoi2014]上升子序列 树状数组
题目描述 求一个数列本质不同的至少含有两个元素的上升子序列数目模10^9+7的结果. 题解 树状数组 傻逼题,离散化后直接使用树状数组统计即可.由于要求本质不同,因此一个数要减去它前一次出现时的贡献( ...
- Maximum Subsequence Sum【最大连续子序列+树状数组解决】
Problem Description 给定K个整数的序列{ N1, N2, ..., NK },其任意连续子序列可表示为{ Ni, Ni+1, ..., Nj },其中 1 <= i < ...
- bzoj5157: [Tjoi2014]上升子序列(树状数组LIS)
5157: [Tjoi2014]上升子序列 题目:传送门 题解: 学一下nlogn的树状数组求最长上生子序列就ok(%爆大佬) 离散化之后,用一个数组记录一下,直接树状数组做 吐槽:妈耶...一开始不 ...
- BZOJ2124: 等差子序列(树状数组&hash -> bitset 求是否存在长度为3的等差数列)
2124: 等差子序列 Time Limit: 3 Sec Memory Limit: 259 MBSubmit: 2354 Solved: 826[Submit][Status][Discuss ...
- BZOJ 3173 最长上升子序列(树状数组+二分+线段树)
给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数字,我们都想知道此时最长上升子序列长度是多少? 由于序列是顺序插入的,所以当前插入的数字对之 ...
随机推荐
- 深入C#类的方法
构造函数 example1: static void Main(string [] args) { SE engineer=new SE(); engineer.Age=; enginner.Name ...
- POJ 3694 Network(Tarjan求割边+LCA)
Network Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 10969 Accepted: 4096 Descript ...
- RabbitMQ笔记(3)
消息从产生--->结束 1.生产者--->交换机--->队列--->消费者 2.生产者--->交换机--->队列 首先: 生产者:Exchange = n:1 Ex ...
- hiho 1590 - 紧张的会议室。区间问题
题目链接 小Hi的公司最近员工增长迅速,同时大大小小的会议也越来越多:导致公司内的M间会议室非常紧张. 现在小Hi知道公司目前有N个会议,其中第i个会议的时间区间是(Si, Ei). 注意这里时间区间 ...
- Failed to connect to server
设置LR浏览器代理解决Failed to connect to server,Connection timed out问题. 虚拟机中,接口测试简单的Get请求,一直提示Failed to conne ...
- ASM磁盘组中的AU与条带
一.AU与条带(AU和条带就是一个分配单位,数据会被以一定单位分割,存储在多个磁盘中.分割单位的大小由AU.条带来决定. ASM有两种条带: 1.不可调粗粒度: 相当于ASM没有条带,或者说AU就是条 ...
- Description Resource Path Location Type Cannot change version of project fac(导入maven项目出现红叉问题)
项目现象如下: 这是由于你的 Maven 编译级别是 jdk太低了 解决方法: 1.在eclipse的工程上选择属性,在选择Project Facets里面中选择Dynamic web Module, ...
- 洛谷P2770 航空路线问题 最小费用流
Code: #include<cstdio> #include<iostream> #include<algorithm> #include<vector&g ...
- (2016北京集训十二)【xsy1542】疯狂求导
题解: 这题看起来很难...但是实际上并没有想象中的那么难 第一眼看上去不会求导公式怎么办?不要紧,题目背景非常良心的给出了题目中的导数计算公式 求完导合并同类项很恶心怎么办?不要紧,样例解释说明了不 ...
- ajax 不执行
1.get形式访问: 一个相同的URL 只有一个结果,所以 第二次访问的时候 如果 URL字符串没变化 浏览器是 直接拿出了第一次访问的结果,post则不会 解决办法: 1.url+new Date( ...