洛谷——P1965 转圈游戏
https://www.luogu.org/problem/show?pid=1965
题目描述
n 个小伙伴(编号从 0 到 n-1)围坐一圈玩游戏。按照顺时针方向给 n 个位置编号,从0 到 n-1。最初,第 0 号小伙伴在第 0 号位置,第 1 号小伙伴在第 1 号位置,……,依此类推。游戏规则如下:每一轮第 0 号位置上的小伙伴顺时针走到第 m 号位置,第 1 号位置小伙伴走到第 m+1 号位置,……,依此类推,第n − m号位置上的小伙伴走到第 0 号位置,第n-m+1 号位置上的小伙伴走到第 1 号位置,……,第 n-1 号位置上的小伙伴顺时针走到第m-1 号位置。
现在,一共进行了 10^k轮,请问 x 号小伙伴最后走到了第几号位置。
输入输出格式
输入格式:
输入文件名为 circle.in。
输入共 1 行,包含 4 个整数 n、m、k、x,每两个整数之间用一个空格隔开。
输出格式:
输出文件名为 circle.out。
输出共 1 行,包含 1 个整数,表示 10
k 轮后 x 号小伙伴所在的位置编号。
输入输出样例
10 3 4 5
5
说明
对于 30%的数据,0 < k < 7;
对于 80%的数据,0 < k < 10^7;
对于 100%的数据,1 <n < 1,000,000,0 < m < n,1 ≤ x ≤ n,0 < k < 10^9。
#include <iostream>
#include <cstdio> #define LL long long using namespace std; LL n,m,k,x,mod; LL quick(LL a,LL b)
{
LL ret=;
for(;b;b/=)
{
if(b&) ret=(ret*a)%mod;
a=(a*a)%mod;
}
return ret;
} int main()
{
scanf("%lld%lld%lld%lld",&n,&m,&k,&x);
mod=n;
printf("%lld",(quick(,k)%mod*m+x)%mod);
return ;
}
洛谷——P1965 转圈游戏的更多相关文章
- 洛谷 P1965 转圈游戏
洛谷 P1965 转圈游戏 传送门 思路 每一轮第 0 号位置上的小伙伴顺时针走到第 m 号位置,第 1 号位置小伙伴走到第 m+1 号位置,--,依此类推,第n − m号位置上的小伙伴走到第 0 号 ...
- 洛谷P1965 转圈游戏 [2013NOIP提高组 D1T1][2017年6月计划 数论04]
P1965 转圈游戏 题目描述 n 个小伙伴(编号从 0 到 n-1)围坐一圈玩游戏.按照顺时针方向给 n 个位置编号,从0 到 n-1.最初,第 0 号小伙伴在第 0 号位置,第 1 号小伙伴在第 ...
- 洛谷P1965 转圈游戏 [NOIP2013]
题目描述 n 个小伙伴(编号从 0 到 n-1)围坐一圈玩游戏.按照顺时针方向给 n 个位置编号,从0 到 n-1.最初,第 0 号小伙伴在第 0 号位置,第 1 号小伙伴在第 1 号位置,……,依此 ...
- 洛谷 P1965 转圈游戏 —— 快速幂
题目:https://www.luogu.org/problemnew/show/P1965 居然真的就只是 ( x + m * 10k % n ) % n 代码如下: #include<ios ...
- 洛谷P1965 转圈游戏
https://www.luogu.org/problem/show?pid=1965 快速幂 #include<iostream> #include<cstdio> #inc ...
- 洛谷 P2197 nim游戏
洛谷 P2197 nim游戏 题目描述 甲,乙两个人玩Nim取石子游戏. nim游戏的规则是这样的:地上有n堆石子(每堆石子数量小于10000),每人每次可从任意一堆石子里取出任意多枚石子扔掉,可以取 ...
- 洛谷 P1000 超级玛丽游戏
P1000 超级玛丽游戏 题目背景 本题是洛谷的试机题目,可以帮助了解洛谷的使用. 建议完成本题目后继续尝试P1001.P1008. 题目描述 超级玛丽是一个非常经典的游戏.请你用字符画的形式输出超级 ...
- 【流水调度问题】【邻项交换对比】【Johnson法则】洛谷P1080国王游戏/P1248加工生产调度/P2123皇后游戏/P1541爬山
前提说明,因为我比较菜,关于理论性的证明大部分是搬来其他大佬的,相应地方有注明. 我自己写的部分换颜色来便于区分. 邻项交换对比是求一定条件下的最优排序的思想(个人理解).这部分最近做了一些题,就一起 ...
- $loj10156/$洛谷$2016$ 战略游戏 树形$DP$
洛谷loj Desription Bob 喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的方法.现在他有个问题. 现在他有座古城堡,古城堡的路形成一棵树.他要在这棵树的节点上放置最少数 ...
随机推荐
- Git 环境安装
本文环境: 操作系统:Windows XP SP3 Git客户端:TortoiseGit-1.8.14.0-32bit 一.安装Git客户端 全部安装均采用默认! 1. 安装支撑软件 msysgit: ...
- swift语言点评十三-Lazy
Lazy Stored Properties A lazy stored property is a property whose initial value is not calculated un ...
- SpringCloud学习笔记(5)----Spring Cloud Netflix之Eureka的服务认证和集群
1. Eureka服务认证 1. 引入依赖 <dependency> <groupId>org.springframework.boot</groupId> < ...
- Matlab--从入门到精通(Chapter3 矩阵运算)
数值计算可以分为两类:矩阵运算和矩阵元素运算 3.1 矩阵函数和特殊矩阵 矩阵代数的处理数组大部分以一维数组(向量)和二维数组(矩阵)为主. 常见的矩阵处理函数如下: 特殊矩 ...
- 小程序自定义tabbar
代码片段: wechatide://minicode/IUoCyemJ7D3d GitHub: https://github.com/WozHuang/Miniprogram-Demo/tree/ma ...
- LAMP环境搭建备忘 -- Apache、pHp 安装 (二)
上一篇 Linux 已经安装好了,我们选择了 CentOS 7 的最小化安装,即没有图形界面,并且我们在安装时设置了网络连接即能够连上外部网络,还设置了 root 密码.下面我们要在此基础上继续安装 ...
- linux磁盘管理与分区 转载
原文:http://zhengjianglong.leanote.com/post/linux%E7%A3%81%E7%9B%98%E5%88%86%E5%8C%BA 一.基础知识 一块磁盘可以分为多 ...
- Centos6.6 yum源更新
1备份: cp /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d//CentOS-Base.repo.ori 2下载: wget -O /etc/y ...
- Linux CentOs6.5误卸载自带python和yum后的解决办法
事故背景:前几天因项目需要,在服务器上搭建python-mysql模块,结果没安装好,于是乎想卸载重装,遂在网上查询卸载python的方法,结果一不小心直接把系统的python删了个干净....... ...
- 如何配置任意目录下Web应用程序
1,首先创建一个Web项目,tomcat 7, JDK 1.8 2,创建Web项目并部署到tomcat服务器下运行的步骤和方法: 在Eclipse下创建一个JAVA project 在JAVA项目下创 ...