A. Coins

Alice and Bob are playing a simple game. They line up a row of nnn identical coins, all with the heads facing down onto the table and the tails upward.

For exactly mmm times they select any kkk of the coins and toss them into the air, replacing each of them either heads-up or heads-down with the same possibility. Their purpose is to gain as many coins heads-up as they can.

Input

The input has several test cases and the first line contains the integer t(1≤t≤1000) which is the total number of cases.

For each case, a line contains three space-separated integers n, m(1≤n,m≤100) and k(1≤k≤n.

Output

For each test case, output the expected number of coins heads-up which you could have at the end under the optimal strategy, as a real number with the precision of 3 digits.

样例输入

6
2 1 1
2 3 1
5 4 3
6 2 3
6 100 1
6 100 2

样例输出

0.500
1.250
3.479
3.000
5.500
5.000

题目来源

概率DP.

设dp[i][j]是第i次操作后正面朝上的概率,则反面朝上还有n-j枚,若n-j大于k,则k中任取

若n-j小于k,则必须从已经正面朝上的硬币中取j-(k-(n-j))枚

#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <vector>
#include <queue>
#include <stack>
#include <cstdlib>
#include <iomanip>
#include <cmath>
#include <cassert>
#include <ctime>
#include <map>
#include <set>
using namespace std;
#pragma comment(linker, "/stck:1024000000,1024000000")
#pragma GCC diagnostic error "-std=c++11"
#define lowbit(x) (x&(-x))
#define max(x,y) (x>=y?x:y)
#define min(x,y) (x<=y?x:y)
#define MAX 100000000000000000
#define MOD 1000000007
#define esp 1e-9
#define pi acos(-1.0)
#define ei exp(1)
#define PI 3.1415926535897932384626433832
#define ios() ios::sync_with_stdio(true)
#define INF 0x3f3f3f3f
#define mem(a) (memset(a,0,sizeof(a)))
int dcmp(double x){return fabs(x)<esp?:x<?-:;}
typedef long long ll;
int n,m,k,T;
double dp[][];
double p[],c[][];
void solve()
{
c[][]=;
for(int i=;i<=;i++)
{
c[i][]=;
for(int j=;j<=;j++)
c[i][j]=c[i-][j-]+c[i-][j];
}
p[]=;
for(int i=;i<=;i++)
p[i]=p[i-]/2.0;
}
int main()
{
solve();
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d",&n,&m,&k);
memset(dp,,sizeof(dp));
dp[][]=;
for(int i=;i<m;i++)
{
for(int j=;j<=n;j++)
{
for(int t=;t<=k;t++)
{
if(n-j>=k) dp[i+][j+t]+=dp[i][j]*c[k][t]*p[k];
else dp[i+][n-k+t]+=dp[i][j]*c[k][t]*p[k];
}
}
}
double ans=0.0;
for(int i=;i<=n;i++)
ans+=i*dp[m][i];
printf("%.3lf\n",ans);
}
return ;
}

B. The Difference

Alice was always good at math. Her only weak points were multiplication and subtraction. To help her with that, Bob presented her with the following problem.

He gave her four positive integers. Alice can change their order optionally. Her task is to find an order, denoted by A1,A2,A and A4​, with the maximum value of A1×A2−A3×A4​.

Input

The input contains several test cases and the first line provides an integer t(1≤t≤100) indicating the number of cases.

Each of the following t lines contains four space-separated integers.

All integers are positive and not greater than 100.

Output

For each test case, output a line with a single integer, the maximum value of A1×A2−A3×A4​.

样例输入

5
1 2 3 4
2 2 2 2
7 4 3 8
100 99 98 97
100 100 1 2

样例输出

10
0
44
394
9998
签到题
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <vector>
#include <queue>
#include <stack>
#include <cstdlib>
#include <iomanip>
#include <cmath>
#include <cassert>
#include <ctime>
#include <map>
#include <set>
using namespace std;
#pragma comment(linker, "/stck:1024000000,1024000000")
#pragma GCC diagnostic error "-std=c++11"
#define lowbit(x) (x&(-x))
#define max(x,y) (x>=y?x:y)
#define min(x,y) (x<=y?x:y)
#define MAX 100000000000000000
#define MOD 1000000007
#define esp 1e-9
#define pi acos(-1.0)
#define ei exp(1)
#define PI 3.1415926535897932384626433832
#define ios() ios::sync_with_stdio(true)
#define INF 0x3f3f3f3f
#define mem(a) (memset(a,0,sizeof(a)))
int dcmp(double x){return fabs(x)<esp?:x<?-:;}
typedef long long ll;
int main()
{
int n,a[];
scanf("%d",&n);
while(n--){
for(int i=;i<;i++)
scanf("%d",&a[i]);
int ans=a[]*a[]-a[]*a[];
for(int i=;i<;i++)
for(int j=;j<;j++)
for(int k=;k<;k++)
if(!(i==j || j==k || i==k))
ans=max(ans,a[i]*a[j]-a[k]*a[-i-j-k]);
printf("%d\n",ans);
}
return ;
}

D. Fence Building

Farmer John owns a farm. He first builds a circle fence. Then, he will choose n points and build some straight fences connecting them. Next, he will feed a cow in each region so that cows cannot play with each other without breaking the fences. In order to feed more cows, he also wants to have as many regions as possible. However, he is busy building fences now, so he needs your help to determine what is the maximum number of cows he can feed if he chooses these n points properly.

Input

The first line contains an integer 1≤T≤100000, the number of test cases. For each test case, there is one line that contains an integer n. It is guaranteed that 1≤T≤105 and 1≤n≤1018.

Output

For each test case, you should output a line ”Case #i: ans” where i is the test caseS number, starting from 1 and ans is the remainder of the maximum number of cows farmer John can feed when divided by 109+7.

样例输入

3
1
3
5

样例输出

Case #1: 1
Case #2: 4
Case #3: 16
结论题
w=C(n,2)+C(n,4)+1;
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <vector>
#include <queue>
#include <stack>
#include <cstdlib>
#include <iomanip>
#include <cmath>
#include <cassert>
#include <ctime>
#include <map>
#include <set>
using namespace std;
#pragma comment(linker, "/stck:1024000000,1024000000")
#pragma GCC diagnostic error "-std=c++11"
#define lowbit(x) (x&(-x))
#define max(x,y) (x>=y?x:y)
#define min(x,y) (x<=y?x:y)
#define MAX 100000000000000000
#define MOD 1000000007
#define esp 1e-9
#define pi acos(-1.0)
#define ei exp(1)
#define PI 3.1415926535897932384626433832
#define ios() ios::sync_with_stdio(true)
#define INF 0x3f3f3f3f
#define mem(a) (memset(a,0,sizeof(a)))
int dcmp(double x){return fabs(x)<esp?:x<?-:;}
typedef long long ll;
ll n,t;
void exgcd(ll a,ll b,ll &x,ll &y)
{
ll t;
if(!b){x=;y=;return ;}
exgcd(b,a%b,x,y);
t=x;x=y;
y=t-a/b*x;
}
ll inv(ll n)
{
ll x,y;
exgcd(n,MOD,x,y);
return (x+MOD)%MOD;
}
ll C(ll n,ll m)
{
if(m>n) return ;
ll ans=;
for(ll i=;i<=m;i++)
{
ans=(ans*(n-i+)%MOD*inv(i)%MOD)%MOD;
}
return ans; }
ll solve(ll n,ll m)
{
if(m==) return ;
return C(n%MOD,m%MOD)*solve(n/MOD,m/MOD)%MOD;
}
int main()
{
scanf("%lld",&t);
ll o=t;
while(t--)
{
scanf("%lld",&n);
printf("Case #%lld: %lld\n",o-t,(solve(n,)+solve(n,)+)%MOD);
}
return ;
}

G. The Mountain

All as we know, a mountain is a large landform that stretches above the surrounding land in a limited area. If we as the tourists take a picture of a distant mountain and print it out, the image on the surface of paper will be in the shape of a particular polygon.

From mathematics angle we can describe the range of the mountain in the picture as a list of distinct points, denoted by (x1,y1) to (xn,yn). The first point is at the original point of the coordinate system and the last point is lying on the x-axis. All points else have positive y coordinates and incremental xxx coordinates. Specifically, all x coordinates satisfy 0=x1<x2<x3<...<xn. All y coordinates are positive except the first and the last points whose yyy coordinates are zeroes.

The range of the mountain is the polygon whose boundary passes through points (x1,y1) to (xn,yn) in turn and goes back to the first point. In this problem, your task is to calculate the area of the range of a mountain in the picture.

Input

The input has several test cases and the first line describes an integer t(1≤t≤20) which is the total number of cases.

In each case, the first line provides the integer n(1≤n≤100) which is the number of points used to describe the range of a mountain. Following n lines describe all points and the iii-th line contains two integers xix_ixi​ and yi(0≤xi,yi≤1000) indicating the coordinate of the i-th point.

Output

For each test case, output the area in a line with the precision of 666 digits.

样例输入

3
3
0 0
1 1
2 0
4
0 0
5 10
10 15
15 0
5
0 0
3 7
7 2
9 10
13 0

样例输出

1.000000
125.000000
60.500000
计算不规则多边形面积,因为x有序,y>0所以切成梯形来计算
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <vector>
#include <queue>
#include <stack>
#include <cstdlib>
#include <iomanip>
#include <cmath>
#include <cassert>
#include <ctime>
#include <map>
#include <set>
using namespace std;
#pragma comment(linker, "/stck:1024000000,1024000000")
#pragma GCC diagnostic error "-std=c++11"
#define lowbit(x) (x&(-x))
#define max(x,y) (x>=y?x:y)
#define min(x,y) (x<=y?x:y)
#define MAX 100000000000000000
#define MOD 1000000007
#define esp 1e-9
#define pi acos(-1.0)
#define ei exp(1)
#define PI 3.1415926535897932384626433832
#define ios() ios::sync_with_stdio(true)
#define INF 0x3f3f3f3f
#define mem(a) (memset(a,0,sizeof(a)))
int dcmp(double x){return fabs(x)<esp?:x<?-:;}
typedef long long ll;
struct Point{
double x,y;
}e[];
int n,t;
int main()
{
scanf("%d",&t);
while(t--){
scanf("%d",&n);
for(int i=;i<n;i++)
scanf("%lf%lf",&e[i].x,&e[i].y);
double ans=0.0;
for(int i=;i<n;i++)
ans+=(e[i].y+e[i-].y)*(e[i].x-e[i-].x);
printf("%.6lf\n",ans/);
}
return ;
}

ACM-ICPC 2017 Asia Urumqi(第八场)的更多相关文章

  1. ACM ICPC 2017 Warmup Contest 9 I

    I. Older Brother Your older brother is an amateur mathematician with lots of experience. However, hi ...

  2. ACM ICPC 2017 Warmup Contest 9 L

    L. Sticky Situation While on summer camp, you are playing a game of hide-and-seek in the forest. You ...

  3. ACM-ICPC 2017 Asia Urumqi A. Coins

    Alice and Bob are playing a simple game. They line up a row of n identical coins, all with the heads ...

  4. ACM-ICPC 2017 Asia Urumqi G. The Mountain

    All as we know, a mountain is a large landform that stretches above the surrounding land in a limite ...

  5. ACM-ICPC 2017 Asia Urumqi:A. Coins(DP) 组合数学

    Alice and Bob are playing a simple game. They line up a row of nn identical coins, all with the head ...

  6. ACM/ICPC 之 BFS-广搜进阶-八数码(经典)(POJ1077+HDU1043)

    八数码问题也称为九宫问题.(本想查查历史,结果发现居然没有词条= =,所谓的历史也就不了了之了) 在3×3的棋盘,摆有八个棋子,每个棋子上标有1至8的某一数字,不同棋子上标的数字不相同.棋盘上还有一个 ...

  7. ACM-ICPC 2017 Asia Urumqi:A. Coins(DP)

    挺不错的概率DP,看似基础,实则很考验扎实的功底 这题很明显是个DP,为什么???找规律或者算组合数这种概率,N不可能给的这么友善... 因为DP一般都要在支持N^2操作嘛. 稍微理解一下,这DP[i ...

  8. ACM-ICPC 2017 Asia Urumqi A. Coins【期望dp】

    题目链接:https://www.jisuanke.com/contest/2870?view=challenges 题目大意:给出n个都正面朝下的硬币,操作m次,每次都选取k枚硬币抛到空中,求操作m ...

  9. hdu 6143: Killer Names (2017 多校第八场 1011)

    题目链接 题意,有m种颜色,给2n个位置染色,使左边n个和右边n个没有共同的颜色. 可以先递推求出恰用i种颜色染n个位置的方案数,然后枚举两边的染色数就可以了,代码很简单. #include<b ...

随机推荐

  1. UVA - 10689 Yet another Number Sequence 矩阵快速幂

                      Yet another Number Sequence Let’s define another number sequence, given by the foll ...

  2. HD-ACM算法专攻系列(12)——Integer Inquiry

    问题描述: 源码: import java.math.BigInteger; import java.util.*; public class Main { //主函数 public static v ...

  3. Windows下安装和使用MongoDB

    支持平台:从2.2版本开始,MongoDB不再支持Windows XP.要使用新版本的MongoDB,请用更新版本的Windows系统. 重要:如果你正在使用Windows Server 2008 R ...

  4. System.IO.FileLoadException异常

    未能加载文件或程序集“NHibernate, Version=4.1.0.4000, Culture=neutral, PublicKeyToken=aa95f207798dfdb4”或它的某一个依赖 ...

  5. 用Beamer做Slides

    学术用幻灯片,首选还是latex.但是问题来了,Beamer这个latex幻灯模板还需要很多自定义设置.于是找了网上一些自己觉得好的例子. http://www.latexstudio.net/ind ...

  6. RelativeLayout.addRule()方法

    RelativeLayout.addRule()方法 通过LayoutParams的 addRule方法来额外的添加别的规则了,android.widget.RelativeLayout.Layout ...

  7. php——get与post方法(转)

    file_get_contents版本: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 <?php /**  * 发送p ...

  8. 优动漫PAINT-草地教程

    非常实用的草地教程,是场景控们绝对要学会的绘画技巧~更有配套草地笔刷~让场景绘画更简易~ 教程是简单,呃.... 没有优动漫PAINT软件肿么办? 别着急,╭(╯^╰)╮ 小编给你送来了 齐全的哟? ...

  9. scrapy框架学习

    一.初窥Scrapy Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架. 可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中. 其最初是为了 页面抓取 (更确切来说, 网 ...

  10. Url 简单讲解

    eg: http://sb.test.com/login?name=liming&password=twotigers 协议 http https ftp 域名 sb.test.com 则是域 ...