转载请注明出处:http://blog.csdn.net/zhoubin1992/article/details/46469557


1.SAT问题描写叙述

命题逻辑中合取范式 (CNF) 的可满足性问题 (SAT)是当代理论计算机科学的核心问题, 是一典型的NP 全然问题.在定义可满足性问题SAT之前。先引进一些逻辑符号。



一个 SAT 问题是指: 对于给定的 CNF 是否存在一组关于命题变元的真值指派使得A 为真. 显然, 假设A 为真, 则 CNF 的每一个子句中必有一个命题变元为 1 (真) 。


2.Las Vegas算法

Las Vegas 算法是利用随机值做出随机选择的一种概率算法,而且不会产生不对的答案。在计算过程中所做出的随机选择,可能使算法比其它算法更快地得到所要求的解。

拉斯维加斯算法不会得到不对的解。一旦用拉斯维加斯算法找到一个解,这个解就一定是正确解。但有时用拉斯维加斯算法找不到解。与蒙特卡罗算法相似,拉斯维加斯算法找到正确解的概率随着它所用的计算时间的添加而提高。

对于所求解问题的任一实例,用同一拉斯维加斯算法反复对该实例求解足够多次,可使求解失败的概率随意小。

Las Vegas 算法用来搜索包括目标结点的解空间。它用一些随机选择来移动,而不须要在每一个结点都计算一个新的结点。假设成功结点的比例在解空间中相当高,则找到目标结点的概率可能非常高。

当下一个结点的计算比較困难或者系统化地搜索没有什么必要时。採用Las Vegas 算法,会提高计算的效率。当然,下一个结点的随机选择有可能导致找不到成功的结点,可是我们能够反复多次运行,来提高目标结点的效率。

拉斯维加斯算法的一个显著特征是它所作的随机性决策有可能导致算法找不到所需的解,可是通过反复多次运行来克服,在求解NP难问题时,用它往往会收到奇效。


3.C++实现代码

// lasvegas3SAT.cpp : 定义控制台应用程序的入口点。
//
/*********************************
-----------------------------------
Lasvegas算法解决3SAT问题(C++实现代码)
-----------------------------------
Author:牧之丶 Date:2014年
Email:bzhou84@163.com
**********************************/
#include "stdafx.h"
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <iostream> const int n=250;
int M[n][3];
int sign[3*n+1];
int x[101],y[101];
int ok[2];
bool Place( int k)
{
//memset(y,1,101);
int t;
/*for( int j = 1; j <= k - 1; j++)
{
y[j]=~x[j];
}*/
for(int i = 0; i < n; i++)
{
t=0;
for(int j = 0; j < 3; j++)
{
if(M[i][j]>k)
t = t+1;
else
t = t+!(sign[i*3+j]^x[M[i][j]] );
}
if(t<1)
return false;
}
return true;
}
bool SAT_True(int x[])
{
int k = 1;
int count = 0;
int i;
while( k <= 100 )
{
count = 0;
for( i = 0; i <= 1 ; i++ )
{
x[k] = i;
if( Place(k))
{
ok[count] = i;
count ++;
}
}
if( count == 0 ) return false;
i = ok[rand() % count];
x[k] = i;
k++;
}
return true;
} int _tmain(int argc, _TCHAR* argv[])
{ //反复运行20次
//int ncase = 20;
double run_time = 0.0; //运行时间
double run_num = 0.0; //运行次数
time_t start,end;
srand(time(0));
//while(ncase--)
//{
start = clock();
for(int i=0;i<n;i++)
for(int j=0;j<3;j++)
M[i][j] = rand()%100+1;
for(int i=1;i<=3*n;i++)
sign[i] = rand()%2; memset(x,0,101*sizeof(int));
int k=1;
while(!SAT_True(x) )
{
k++;
if(k > 100000)
{
printf("failed!\n");
break;
}
}
end = clock();
run_num = k;
run_time += (end - start)/CLOCKS_PER_SEC;
if(k <= 100000)
std::cout << "运行了" << run_num << "次" << std::endl;
//} printf("the running time is : %f\n", run_time);
system("pause");
return 0;
}

4.实验结果及分析

为了測试Las Vegas 的计算效果, 我们用随机产生的3-SAT 模型(每一个子句的长度 l= 3, 且子句里的变元两两不同) 做实例。每种取值运行20次。考虑有可能找不到解的情况,当搜索次数超过十万次,觉得此例子不可满足。

得到的结果为:


參考文献

[1] 张德富.算法设计与分析(高级教程)[M].国防工业出版社,2007.

【先进的算法】Lasvegas算法3SAT问题(C++实现代码)的更多相关文章

  1. GMM算法k-means算法的比较

    1.EM算法 GMM算法是EM算法族的一个具体例子. EM算法解决的问题是:要对数据进行聚类,假定数据服从杂合的几个概率分布,分布的具体参数未知,涉及到的随机变量有两组,其中一组可观测另一组不可观测. ...

  2. 简单易学的机器学习算法——EM算法

    简单易学的机器学习算法——EM算法 一.机器学习中的参数估计问题 在前面的博文中,如“简单易学的机器学习算法——Logistic回归”中,采用了极大似然函数对其模型中的参数进行估计,简单来讲即对于一系 ...

  3. 最短路径算法-Dijkstra算法的应用之单词转换(词梯问题)(转)

    一,问题描述 在英文单词表中,有一些单词非常相似,它们可以通过只变换一个字符而得到另一个单词.比如:hive-->five:wine-->line:line-->nine:nine- ...

  4. 重新想象 Windows 8 Store Apps (31) - 加密解密: 哈希算法, 对称算法

    原文:重新想象 Windows 8 Store Apps (31) - 加密解密: 哈希算法, 对称算法 [源码下载] 重新想象 Windows 8 Store Apps (31) - 加密解密: 哈 ...

  5. Hash散列算法 Time33算法

    hash在开发由频繁使用.今天time33也许最流行的哈希算法. 算法: 对字符串的每一个字符,迭代的乘以33 原型: hash(i) = hash(i-1)*33 + str[i] ; 在使用时.存 ...

  6. 变易算法 - STL算法

    欢迎访问我的新博客:http://www.milkcu.com/blog/ 原文地址:http://www.milkcu.com/blog/archives/mutating-algorithms.h ...

  7. STL非变易算法 - STL算法

    欢迎访问我的新博客:http://www.milkcu.com/blog/ 原文地址:http://www.milkcu.com/blog/archives/1394600460.html 原创:ST ...

  8. 【啊哈!算法】算法7:Dijkstra最短路算法

    上周我们介绍了神奇的只有五行的Floyd最短路算法,它可以方便的求得任意两点的最短路径,这称为“多源最短路”.本周来来介绍指定一个点(源点)到其余各个顶点的最短路径,也叫做“单源最短路径”.例如求下图 ...

  9. 【啊哈!算法】算法6:只有五行的Floyd最短路算法

            暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计划旅程,小哼希望在出发之前知道任意两个城市之前的最短路程.         上图中有 ...

随机推荐

  1. 10.Maven依赖排除 禁止依赖传递 取消依赖的方法

    转自:https://www.cnblogs.com/duanxz/p/6084494.html 大家都知道Maven的优点是依赖管理,特别是前期使用ANT的开发者都有很多感触.最近要开发一个java ...

  2. select下拉列表选中后,跳转新链接

    1.在当前页面打开新链接 <select onchange="location.href=this.options[this.selectedIndex].value" na ...

  3. Mysql学习总结(14)——Mysql主从复制配置

    mysql主从复制 怎么安装mysql数据库,这里不说了,只说它的主从复制,步骤如下: 1.主从服务器分别作以下操作:   1.1.版本一致   1.2.初始化表,并在后台启动mysql   1.3. ...

  4. iOS_02_第一个C语言程序(理解编译、连接、运行)

    一.开发工具的选择 1. 可以用来写代码的工具:记事本.ULtraEdit.Vim.Xcode等. 2. 选择XCode的原因:苹果公司官方提供的开发利器.简化开发的工程.有高亮显示功能. 3. 使用 ...

  5. 关于HEXO安装失败的解决方法

    目前国内npm源有问题:所以键入如下代码即可安装成功: npm install -g cnpm --registry=https://registry.npm.taobao.org cnpm inst ...

  6. 在Java中,return null 是否安全, 为什么?

    Java代码中return value 为null 是不是在任何情况下都可以,为什么不会throw NullPointerException? Java语言层面:null值自身是不会引起任何问题的.它 ...

  7. HDU 5372 线段树

    给出两种操作: 第i个0:在x位置插入一个长度为i的线段,并输出该线段共覆盖了多少之前增加的线段 1:删除第i次插入的线段 官方题解:对于新插入的线段,查询有多少个线段左端点大于等于该线段的左端点. ...

  8. Altium Designer的pcb上添加文字说明

  9. Arcgis engine 指定图层对要素进行创建、删除等操作

    Arcgis engine 指定图层创建点要素 在指定的图层上创建一个点要素,点要素的位置是通过X,Y坐标指定的,下面是具体的注释 .其中 和IFeatureClassWrite接口有关的代码不要好像 ...

  10. iOS改动UIButton setTitle字体颜色和调整字体位置

    调整Title字体位置 [button setTitleEdgeInsets:UIEdgeInsetsMake(10, 0, 0, 0)]; 四个參数分别代表:上边界,左边界.下边界,右边界 改动UI ...