Tensorflow原理通用
使用 TensorFlow, 你必须明白 TensorFlow:
使用图 (graph) 来表示计算任务.
在被称之为 会话 (Session) 的上下文 (context) 中执行图.
使用 tensor 表示数据.
通过 变量 (Variable) 维护状态.
使用 feed 和 fetch 可以为任意的操作(arbitrary operation) 赋值或者从其中获取数据.
综述
TensorFlow 是一个编程系统, 使用图来表示计算任务. 图中的节点被称之为 op
(operation 的缩写). 一个 op 获得 0 个或多个 Tensor, 执行计算,
产生 0 个或多个 Tensor. 每个 Tensor 是一个类型化的多维数组.
例如, 你可以将一小组图像集表示为一个四维浮点数数组,
这四个维度分别是 [batch, height, width, channels].
一个 TensorFlow 图描述了计算的过程. 为了进行计算, 图必须在 会话 里被启动.
会话 将图的 op 分发到诸如 CPU 或 GPU 之类的 设备 上, 同时提供执行 op 的方法.
这些方法执行后, 将产生的 tensor 返回. 在 Python 语言中, 返回的 tensor 是
numpy ndarray 对象; 在 C 和 C++ 语言中, 返回的 tensor 是
tensorflow::Tensor 实例.
计算图
TensorFlow 程序通常被组织成一个构建阶段和一个执行阶段. 在构建阶段, op 的执行步骤
被描述成一个图. 在执行阶段, 使用会话执行执行图中的 op.
例如, 通常在构建阶段创建一个图来表示和训练神经网络, 然后在执行阶段反复执行图中的训练 op.
TensorFlow 支持 C, C++, Python 编程语言. 目前, TensorFlow 的 Python 库更加易用,
它提供了大量的辅助函数来简化构建图的工作, 这些函数尚未被 C 和 C++ 库支持.
三种语言的会话库 (session libraries) 是一致的.
构建图
构建图的第一步, 是创建源 op (source op). 源 op 不需要任何输入, 例如 常量 (Constant). 源 op 的输出被传递给其它 op 做运算.
Python 库中, op 构造器的返回值代表被构造出的 op 的输出, 这些返回值可以传递给其它
op 构造器作为输入.
TensorFlow Python 库有一个默认图 (default graph), op 构造器可以为其增加节点. 这个默认图对
许多程序来说已经足够用了. 阅读 Graph 类 文档
来了解如何管理多个图.
import tensorflow as tf
# 创建一个常量 op, 产生一个 1x2 矩阵. 这个 op 被作为一个节点
# 加到默认图中.
#
# 构造器的返回值代表该常量 op 的返回值.
matrix1 = tf.constant([[3., 3.]])
# 创建另外一个常量 op, 产生一个 2x1 矩阵.
matrix2 = tf.constant([[2.],[2.]])
# 创建一个矩阵乘法 matmul op , 把 'matrix1' 和 'matrix2' 作为输入.
# 返回值 'product' 代表矩阵乘法的结果.
product = tf.matmul(matrix1, matrix2)
默认图现在有三个节点, 两个 constant() op, 和一个matmul() op. 为了真正进行矩阵相乘运算, 并得到矩阵乘法的
结果, 你必须在会话里启动这个图.
在一个会话中启动图
构造阶段完成后, 才能启动图. 启动图的第一步是创建一个 Session 对象, 如果无任何创建参数,
会话构造器将启动默认图.
欲了解完整的会话 API, 请阅读Session 类.
# 启动默认图.
sess = tf.Session()
# 调用 sess 的 'run()' 方法来执行矩阵乘法 op, 传入 'product' 作为该方法的参数.
# 上面提到, 'product' 代表了矩阵乘法 op 的输出, 传入它是向方法表明, 我们希望取回
# 矩阵乘法 op 的输出.
#
# 整个执行过程是自动化的, 会话负责传递 op 所需的全部输入. op 通常是并发执行的.
#
# 函数调用 'run(product)' 触发了图中三个 op (两个常量 op 和一个矩阵乘法 op) 的执行.
#
# 返回值 'result' 是一个 numpy `ndarray` 对象.
result = sess.run(product)
print result
# ==> [[ 12.]]
# 任务完成, 关闭会话.
sess.close()
Session 对象在使用完后需要关闭以释放资源. 除了显式调用 close 外, 也可以使用 "with" 代码块
来自动完成关闭动作.
with tf.Session() as sess:
result = sess.run([product])
print result
在实现上, TensorFlow 将图形定义转换成分布式执行的操作, 以充分利用可用的计算资源(如 CPU
或 GPU). 一般你不需要显式指定使用 CPU 还是 GPU, TensorFlow 能自动检测. 如果检测到 GPU, TensorFlow
会尽可能地利用找到的第一个 GPU 来执行操作.
如果机器上有超过一个可用的 GPU, 除第一个外的其它 GPU 默认是不参与计算的. 为了让 TensorFlow
使用这些 GPU, 你必须将 op 明确指派给它们执行. withDevice 语句用来指派特定的 CPU 或 GPU
执行操作:
with tf.Session() as sess:
with tf.device("/gpu:1"):
matrix1 = tf.constant([[3., 3.]])
matrix2 = tf.constant([[2.],[2.]])
product = tf.matmul(matrix1, matrix2)
设备用字符串进行标识. 目前支持的设备包括:
"/cpu:0": 机器的 CPU.
"/gpu:0": 机器的第一个 GPU, 如果有的话.
"/gpu:1": 机器的第二个 GPU, 以此类推.
阅读使用GPU章节, 了解 TensorFlow GPU 使用的更多信息.
交互式使用
文档中的 Python 示例使用一个会话 Session 来
启动图, 并调用 Session.run() 方法执行操作.
为了便于使用诸如 IPython 之类的 Python 交互环境, 可以使用
InteractiveSession 代替
Session 类, 使用 Tensor.eval()
和 Operation.run() 方法代替
Session.run(). 这样可以避免使用一个变量来持有会话.
# 进入一个交互式 TensorFlow 会话.
import tensorflow as tf
sess = tf.InteractiveSession()
x = tf.Variable([1.0, 2.0])
a = tf.constant([3.0, 3.0])
# 使用初始化器 initializer op 的 run() 方法初始化 'x'
x.initializer.run()
# 增加一个减法 sub op, 从 'x' 减去 'a'. 运行减法 op, 输出结果
sub = tf.sub(x, a)
print sub.eval()
# ==> [-2. -1.]
Tensor
TensorFlow 程序使用 tensor 数据结构来代表所有的数据, 计算图中, 操作间传递的数据都是 tensor.
你可以把 TensorFlow tensor 看作是一个 n 维的数组或列表. 一个 tensor 包含一个静态类型 rank, 和
一个 shape. 想了解 TensorFlow 是如何处理这些概念的, 参见
Rank, Shape, 和 Type.
变量
Variables for more details.
变量维护图执行过程中的状态信息. 下面的例子演示了如何使用变量实现一个简单的计数器. 参见
变量 章节了解更多细节.
# 创建一个变量, 初始化为标量 0.
state = tf.Variable(0, name="counter")
# 创建一个 op, 其作用是使 state 增加 1
one = tf.constant(1)
new_value = tf.add(state, one)
update = tf.assign(state, new_value)
# 启动图后, 变量必须先经过`初始化` (init) op 初始化,
# 首先必须增加一个`初始化` op 到图中.
init_op = tf.initialize_all_variables()
# 启动图, 运行 op
with tf.Session() as sess:
# 运行 'init' op
sess.run(init_op)
# 打印 'state' 的初始值
print sess.run(state)
# 运行 op, 更新 'state', 并打印 'state'
for _ in range(3):
sess.run(update)
print sess.run(state)
# 输出:
# 0
# 1
# 2
# 3
代码中 assign() 操作是图所描绘的表达式的一部分, 正如 add() 操作一样. 所以在调用 run()
执行表达式之前, 它并不会真正执行赋值操作.
通常会将一个统计模型中的参数表示为一组变量. 例如, 你可以将一个神经网络的权重作为某个变量存储在一个 tensor 中.
在训练过程中, 通过重复运行训练图, 更新这个 tensor.
Fetch
为了取回操作的输出内容, 可以在使用 Session 对象的 run() 调用 执行图时, 传入一些 tensor,
这些 tensor 会帮助你取回结果. 在之前的例子里, 我们只取回了单个节点 state, 但是你也可以取回多个
tensor:
input1 = tf.constant(3.0)
input2 = tf.constant(2.0)
input3 = tf.constant(5.0)
intermed = tf.add(input2, input3)
mul = tf.mul(input1, intermed)
with tf.Session() as sess:
result = sess.run([mul, intermed])
print result
# 输出:
# [array([ 21.], dtype=float32), array([ 7.], dtype=float32)]
需要获取的多个 tensor 值,在 op 的一次运行中一起获得(而不是逐个去获取 tensor)。
Feed
上述示例在计算图中引入了 tensor, 以常量或变量的形式存储. TensorFlow 还提供了 feed 机制, 该机制
可以临时替代图中的任意操作中的 tensor 可以对图中任何操作提交补丁, 直接插入一个 tensor.
feed 使用一个 tensor 值临时替换一个操作的输出结果. 你可以提供 feed 数据作为 run() 调用的参数.
feed 只在调用它的方法内有效, 方法结束, feed 就会消失. 最常见的用例是将某些特殊的操作指定为 "feed" 操作,
标记的方法是使用 tf.placeholder() 为这些操作创建占位符.
input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)
output = tf.mul(input1, input2)
with tf.Session() as sess:
print sess.run([output], feed_dict={input1:[7.], input2:[2.]})
# 输出:
# [array([ 14.], dtype=float32)]
for a larger-scale example of feeds.
如果没有正确提供 feed, placeholder() 操作将会产生错误.
MNIST 全连通 feed 教程
(source code)
给出了一个更大规模的使用 feed 的例子
Tensorflow原理通用的更多相关文章
- 【深度解析】Google第二代深度学习引擎TensorFlow开源
作者:王嘉俊 王婉婷 TensorFlow 是 Google 第二代深度学习系统,今天宣布完全开源.TensorFlow 是一种编写机器学习算法的界面,也可以编译执行机器学习算法的代码.使用 Tens ...
- python爬虫(一)_爬虫原理和数据抓取
本篇将开始介绍Python原理,更多内容请参考:Python学习指南 为什么要做爬虫 著名的革命家.思想家.政治家.战略家.社会改革的主要领导人物马云曾经在2015年提到由IT转到DT,何谓DT,DT ...
- [译]TensorFlow入门
TensorFlow入门 张量(tensor) Tensorflow中的主要数据单元是张量(tensor), 一个张量包含了一组基本数据,可以是列多维数据.一个张量的"等级"(ra ...
- (Python爬虫04)了解通用爬虫和聚焦爬虫,还是理论知识.快速入门可以略过的
如果现在的你返回N年前去重新学习一门技能,你会咋做? 我会这么干: ...哦,原来这个本事学完可以成为恋爱大神啊, 我要掌握精髓需要这么几个要点一二三四..... 具体的学习步骤是这样的一二三.... ...
- 深度学习---tensorflow简介
个core可以有不同的代码路径.对于反向传播算法来说,基本计算就是矩阵向量乘法,对一个向量应用激活函数这样的向量化指令,而不像在传统的代码里会有很多if-else这样的逻辑判断,所以使用GPU加速非常 ...
- 看到了一篇不错的tensorflow文章
http://dataunion.org/28906.html 本文作者 Steven Dufresne,总结了新手学 TensorFlow 需要的核心知识点和实操内容,旨在鼓励更多人借 Tensor ...
- Python玩转人工智能最火框架 TensorFlow应用实践 ☝☝☝
Python玩转人工智能最火框架 TensorFlow应用实践 (一个人学习或许会很枯燥,但是寻找更多志同道合的朋友一起,学习将会变得更加有意义✌✌) 全民人工智能时代,不甘心只做一个旁观者,那就现在 ...
- 01基于python玩转人工智能最火框架之TensorFlow
课程主要内容 人工智能理论知识 开发工具介绍和环境配置 TensorFlow基础练习和应用实战 课程能学到什么? 人工智能知识点 Python库的使用 TensorFlow 框架使用和应用开发 适合人 ...
- python机器学习TensorFlow框架
TensorFlow框架 关注公众号"轻松学编程"了解更多. 一.简介 TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运 ...
随机推荐
- Oracle中如何判断字符串是否全为数字
Oracle中如何判断字符串是否全为数字 学习了:http://www.cnblogs.com/zrcoffee/archive/2012/12/11/2812744.html 本文介绍了判断字符串是 ...
- pl/sql developer 布局结构保存
pl/sql developer 布局结构保存 调整了工具栏,调整了窗体框位置,点击 窗口->保存版面 就可以保留当前的调整的结果,不用一次一次调整了: 也可以在工具 -> 首选项 -&g ...
- Python3 pymysql连接MySQL数据库
#!/usr/bin/python # -*- coding:utf8 -*- import pymysql #取得数据库连接对象 conn = pymysql.connect(host='127.0 ...
- 黑马day01xml 解析方式与原理分析
dom解析方式和sax解析
- Shell脚本递归打印指定文件夹中全部文件夹文件
#!/bin/bash #递归打印当前文件夹下的全部文件夹文件. PRINTF() { ls $1 | while read line #一次读取每一行放到line变量中 do [ -d $1/$li ...
- Linux命令(四)——文件权限管理
文件权限是指对文件的访问控制,即哪些用户或群组可以访问文件以及执行什么样的操作. 一.文件的权限 1.Linux文件类型 (1)普通文件:文本文件+数据文件+可执行的二进制文件. (2)目录文件:即文 ...
- HDU1269 有向图强连通分量
题目大意:问一个有向图是否任意两点在两个方向上互相连通. 有向图强连通分量定义:如果一个图中的任意两点在两个方向上都互相连通,则该图为强连通图.极大强连通图为有向图的强连通分量(注意是极大,不是最大. ...
- vue.js 父组件如何触发子组件中的方法
组件 什么是组件? 组件 (Component) 是 Vue.js 最强大的功能之一.组件可以扩展 HTML 元素,封装可重用的代码.在较高层面上,组件是自定义元素,Vue.js 的编译器为它添加特殊 ...
- 【NOIP 2002】 字串变换
[题目链接] https://www.luogu.org/problemnew/show/P1032 [算法] 广度优先搜索 用stl库里的map来判重 [代码] #include<bits/s ...
- JDBC基础01
今日知识 1. JDBC基本概念2. 快速入门3. 对JDBC中各个接口和类详解 JDBC: 1. 概念:Java DataBase Connectivity Java 数据库连接, Java语言操作 ...