Description

FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in their hooves. They have decided to put a rain siren on the farm to let them know when rain is approaching. They intend to create a rain evacuation plan so that all the cows can get to shelter before the rain begins. Weather forecasting is not always correct, though. In order to minimize false alarms, they want to sound the siren as late as possible while still giving enough time for all the cows to get to some shelter. The farm has F (1 <= F <= 200) fields on which the cows graze. A set of P (1 <= P <= 1500) paths connects them. The paths are wide, so that any number of cows can traverse a path in either direction. Some of the farm's fields have rain shelters under which the cows can shield themselves. These shelters are of limited size, so a single shelter might not be able to hold all the cows. Fields are small compared to the paths and require no time for cows to traverse. Compute the minimum amount of time before rain starts that the siren must be sounded so that every cow can get to some shelter.

    约翰的牛们非常害怕淋雨,那会使他们瑟瑟发抖.他们打算安装一个下雨报警器,并且安排了一个撤退计划.他们需要计算最少的让所有牛进入雨棚的时间.    牛们在农场的F(1≤F≤200)个田地上吃草.有P(1≤P≤1500)条双向路连接着这些田地.路很宽,无限量的牛可以通过.田地上有雨棚,雨棚有一定的容量,牛们可以瞬间从这块田地进入这块田地上的雨棚    请计算最少的时间,让每只牛都进入雨棚.

Input

* Line 1: Two space-separated integers: F and P

* Lines 2..F+1: Two space-separated integers that describe a field. The first integer (range: 0..1000) is the number of cows in that field. The second integer (range: 0..1000) is the number of cows the shelter in that field can hold. Line i+1 describes field i. * Lines F+2..F+P+1: Three space-separated integers that describe a path. The first and second integers (both range 1..F) tell the fields connected by the path. The third integer (range: 1..1,000,000,000) is how long any cow takes to traverse it.

    第1行:两个整数F和P;
    第2到F+1行:第i+l行有两个整数描述第i个田地,第一个表示田地上的牛数,第二个表示田地上的雨棚容量.两个整数都在0和1000之间.
    第F+2到F+P+I行:每行三个整数描述一条路,分别是起点终点,及通过这条路所需的时间(在1和10^9之间).

Output

* Line 1: The minimum amount of time required for all cows to get under a shelter, presuming they plan their routes optimally. If it not possible for the all the cows to get under a shelter, output "-1".

    一个整数,表示最少的时间.如果无法使牛们全部进入雨棚,输出-1.
 
题解: 预处理出任意两点间最短距离,每次二分一下时间,时间小于等于二分的时间就进行加边. 对于每一个牛群连接容量为牛数量的边,并从雨棚向终点连边,容量为雨棚容量. 如果达到漫流,则继续往小了二分,否则向更大二分. 
 
#include<bits/stdc++.h>
#define setIO(s) freopen(s".in","r",stdin)
#define maxn 1000000
#define inf 10000000000000
#define ll long long
using namespace std;
namespace Dinic{
struct Edge{
int from,to,cap;
Edge(int u=0,int v=0,int c=0):from(u),to(v),cap(c){}
};
vector<int>G[500];
vector<Edge>edges;
queue<int>Q;
int vis[500],d[500],curr[500];
int s,t;
void addedge(int u,int v,int c){
edges.push_back(Edge(u,v,c)),edges.push_back(Edge(v,u,0));
int m=edges.size();
G[u].push_back(m-2),G[v].push_back(m-1);
}
int BFS(){
memset(vis,0,sizeof(vis));
d[s]=0,vis[s]=1, Q.push(s);
while(!Q.empty()){
int u=Q.front();Q.pop();
for(int sz=G[u].size(),i=0;i<sz;++i){
Edge r=edges[G[u][i]];
if(!vis[r.to]&&r.cap>0) {
vis[r.to]=1,d[r.to]=d[u]+1;
Q.push(r.to);
}
}
}
return vis[t];
}
int dfs(int x,int cur){
if(x==t) return cur;
int f,flow=0;
for(int sz=G[x].size(),i=curr[x];i<sz;++i){
curr[x]=i;
Edge r=edges[G[x][i]];
if(d[r.to]==d[x]+1&&r.cap>0){
f=dfs(r.to,min(cur,r.cap));
cur-=f,flow+=f,edges[G[x][i]].cap-=f,edges[G[x][i]^1].cap+=f;
}
if(cur<=0) break;
}
return flow;
}
int maxflow(){
int flow=0;
while(BFS()) memset(curr,0,sizeof(curr)),flow+=dfs(s,10000000);
return flow;
}
void re(){
for(int i=0;i<500;++i) G[i].clear();
edges.clear();
}
};
#define row1(i) (i)
#define row2(i) (i+n)
int C[maxn],num[maxn],sums=0,n;
long long d[500][500];
bool check(ll tmp)
{
Dinic::re();
int s=0,t=row2(n+1);
Dinic::s=s,Dinic::t=t;
for(int i=1;i<=n;++i)
{
if(num[i]) Dinic::addedge(s,row1(i),num[i]);
if(C[i]) Dinic::addedge(row2(i),t,C[i]);
}
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
{
if(i!=j && d[i][j]<=tmp) Dinic::addedge(row1(i), row2(j), 10000000);
}
return Dinic::maxflow() >= sums;
}
int main()
{
// setIO("input");
int m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;++i) scanf("%d%d",&num[i],&C[i]),sums+=num[i];
for(int i=0;i<=230;++i)
for(int j=0;j<=230;++j) d[i][j]=inf;
for(int i=0;i<=230;++i) d[i][i]=0;
for(int i=1;i<=m;++i)
{
int u,v;
ll c;
scanf("%d%d%lld",&u,&v,&c);
if(u!=v) d[u][v]=d[v][u]=min(d[u][v],c);
}
for(int k=1;k<=n;++k)
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j) d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
ll l=0,r=100000000000000,ans=-1;
while(l<=r)
{
ll mid=(l+r)>>1;
if(check(mid)) ans=mid,r=mid-1;
else l=mid+1;
}
printf("%lld\n",ans);
return 0;
}

  

BZOJ 1738: [Usaco2005 mar]Ombrophobic Bovines 发抖的牛 网络流 + 二分 + Floyd的更多相关文章

  1. BZOJ 1738: [Usaco2005 mar]Ombrophobic Bovines 发抖的牛( floyd + 二分答案 + 最大流 )

    一道水题WA了这么多次真是.... 统考终于完 ( 挂 ) 了...可以好好写题了... 先floyd跑出各个点的最短路 , 然后二分答案 m , 再建图. 每个 farm 拆成一个 cow 点和一个 ...

  2. BZOJ 1738: [Usaco2005 mar]Ombrophobic Bovines 发抖的牛

    Description 约翰的牛们非常害怕淋雨,那会使他们瑟瑟发抖.他们打算安装一个下雨报警器,并且安排了一个撤退计划.他们需要计算最少的让所有牛进入雨棚的时间.    牛们在农场的F(1≤F≤200 ...

  3. bzoj 1738 [Usaco2005 mar]Ombrophobic Bovines 发抖的牛 最大流+二分

    题目要求所有牛都去避雨的最长时间最小. 显然需要二分 二分之后考虑如何判定. 显然每头牛都可以去某个地方 但是前提是最短路径<=mid. 依靠二分出来的东西建图.可以发现这是一个匹配问题 din ...

  4. BZOJ1738 [Usaco2005 mar]Ombrophobic Bovines 发抖的牛

    先预处理出来每个点对之间的最短距离 然后二分答案,网络流判断是否可行就好了恩 /************************************************************ ...

  5. 【bzoj1738】[Usaco2005 mar]Ombrophobic Bovines 发抖的牛 Floyd+二分+网络流最大流

    题目描述 FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain m ...

  6. bzoj 1734: [Usaco2005 feb]Aggressive cows 愤怒的牛【二分+贪心】

    二分答案,贪心判定 #include<iostream> #include<cstdio> #include<algorithm> using namespace ...

  7. poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分, dinic, isap

    poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分 dinic /* * Author: yew1eb * Created Time: 2014年10月31日 星期五 ...

  8. BZOJ 1739: [Usaco2005 mar]Space Elevator 太空电梯

    题目 1739: [Usaco2005 mar]Space Elevator 太空电梯 Time Limit: 5 Sec  Memory Limit: 64 MB Description The c ...

  9. BZOJ 1734: [Usaco2005 feb]Aggressive cows 愤怒的牛( 二分答案 )

    最小最大...又是经典的二分答案做法.. -------------------------------------------------------------------------- #inc ...

随机推荐

  1. Grails里的集成测试代码试例

    测试的命令,3和2不一样了,要找找.. User.groovy package com.grailsinaction class User { String loginId String passwo ...

  2. nyoj_366_D的小L_201403011600

    D的小L 时间限制:4000 ms  |  内存限制:65535 KB 难度:2   描述       一天TC的匡匡找ACM的小L玩三国杀,但是这会小L忙着哩,不想和匡匡玩但又怕匡匡生气,这时小L给 ...

  3. 开源GIS软件 4

    空间数据操作框架 Apache SIS Apache SIS 是一个空间的框架,可以更好地搜索,数据聚类,归档,或任何其他相关的空间坐标表示的需要. kvwmap kvwmap是一个采用PHP开发的W ...

  4. 从头认识java-15.6 队列(Queue)

    这一章节我们来讨论一下队列(Queue). 1.什么是队列? 队列是一种特殊的线性表,特殊之处在于它仅仅同意在表的前端(front)进行删除操作,而在表的后端(rear)进行插入操作,和栈一样.队列是 ...

  5. Web Service学习-CXF开发Web Service的权限控制(二)

    Web Service怎样进行权限控制? 解决思路:server端要求input消息总是携带实username.password信息,假设没实username和password信息.直接拒绝调用 解决 ...

  6. 小米手机 js 脚本取src为空的适配问题

    今天測试提上来一个问题 我android webview 中运行了一段js脚本.去替换原来的图片.可是小米手机上竟然没起作用 花了一个中午的午休看问题 贴出来帮助下遇到相同的问题的朋友吧.我百度了半天 ...

  7. MFC的UI更新机制和加速键的创建

    近期在看<MFC Windows程序设计>这本书,正好看到更新菜单中的菜单项和加入菜单项的加速键这方面的内容,下面总一下总结. MFC提供的更新菜单项的机制例如以下: 通过消息映射表中的O ...

  8. 【ODPS】阿里云ODPS中带分区的表操作

    1.创建分区表: 分区表有自己的分区列,而分区表则没有. public static void createTableWithPartition(Odps odps, String createTab ...

  9. Linux系统编程——特殊进程之僵尸进程

    僵尸进程(Zombie Process) 进程已执行结束,但进程的占用的资源未被回收.这种进程称为僵尸进程. 在每一个进程退出的时候,内核释放该进程全部的资源.包含打开的文件.占用的内存等. 可是仍然 ...

  10. ExtJs grid单选,多选

    一. selType : 'checkboxmodel',singleSelect : true, // 单选multiSelect : true, // 多选singleSelects:['edit ...