POJ 1418 基本操作和圆 离散弧
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 761 | Accepted: 319 |
Description
A handful of various sized confetti have been dropped on a table. Given their positions and sizes, can you tell us how many of them you can see?
The following figure represents the disc configuration for the first sample input, where the bottom disc is still visible.
Input
n
x1 y1 r1
x2 y2 r2
...
xn yn rn
The first line in a configuration is the number of discs in the configuration (a positive integer not more than 100), followed by one line descriptions of each disc : coordinates of its center and radius, expressed as real numbers in decimal notation, with
up to 12 digits after the decimal point. The imprecision margin is +/- 5 x 10^(-13). That is, it is guaranteed that variations of less than +/- 5 x 10^(-13) on input values do not change which discs are visible. Coordinates of all points contained in discs
are between -10 and 10.
Confetti are listed in their stacking order, x1 y1 r1 being the bottom one and xn yn rn the top one. You are observing from the top.
The end of the input is marked by a zero on a single line.
Output
Sample Input
3
0 0 0.5
-0.9 0 1.00000000001
0.9 0 1.00000000001
5
0 1 0.5
1 1 1.00000000001
0 2 1.00000000001
-1 1 1.00000000001
0 -0.00001 1.00000000001
5
0 1 0.5
1 1 1.00000000001
0 2 1.00000000001
-1 1 1.00000000001
0 0 1.00000000001
2
0 0 1.0000001
0 0 1
2
0 0 1
0.00000001 0 1
0
Sample Output
3
5
4
2
2
给定一堆圆,求可见的圆有几个。
问别人的思路;
把圆弧离散化出来。
|
伏特跳蚤国王(497446970) 12:49:02
然后计算能看见的圆弧
|
Sd.无心插柳(450978053) 12:49:02
假设一个圆有条圆弧,没有被它之上的圆盖住,那肯定是可见的
|
Sd.无心插柳(450978053) 12:49:11
但另一种可能
|
Sd.无心插柳(450978053) 12:49:35
|
Sd.无心插柳(450978053) 12:50:34
事实上就是某条可见的圆弧盖住的圆
|
Sd.无心插柳(450978053) 12:50:38
也是可见的
|
rabbit(1337207267) 12:54:20
是不是一条可见的圆弧仅仅能盖住一个圆。
|
Sd.无心插柳(450978053) 12:54:55
不是
|
Sd.无心插柳(450978053) 12:55:11
但可见的肯定是从上往下盖住的第一个圆
|
代码:
/* ***********************************************
Author :rabbit
Created Time :2014/7/8 13:49:36
File Name :3.cpp
************************************************ */
#pragma comment(linker, "/STACK:102400000,102400000")
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <sstream>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <string>
#include <time.h>
#include <math.h>
#include <queue>
#include <stack>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define eps 1e-14
#define pi acos(-1.0)
typedef long long ll;
int dcmp(double x){
if(fabs(x)<eps)return 0;
return x>0?1:-1;
}
struct Point{
double x,y;
Point(double _x=0,double _y=0){
x=_x;y=_y;
}
};
Point operator + (Point a,Point b){
return Point(a.x+b.x,a.y+b.y);
}
Point operator - (Point a,Point b){
return Point(a.x-b.x,a.y-b.y);
}
Point operator * (Point a,double p){
return Point(a.x*p,a.y*p);
}
Point operator / (Point a,double p){
return Point(a.x/p,a.y/p);
}
bool operator < (const Point &a,const Point &b){
return a.x<b.x||(a.x==b.x&&a.y<b.y);
}
bool operator == (const Point &a,const Point &b){
return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0;
}
double Dot(Point a,Point b){
return a.x*b.x+a.y*b.y;
}
double Length(Point a){
return sqrt(Dot(a,a));
}
double Angle(Point a,Point b){
return acos(Dot(a,b)/Length(a)/Length(b));
}
double angle(Point a){
return atan2(a.y,a.x);
}
double Cross(Point a,Point b){
return a.x*b.y-a.y*b.x;
}
Point vecunit(Point a){
return a/Length(a);
}
Point Normal(Point a){
return Point(-a.y,a.x)/Length(a);
}
Point Rotate(Point a,double rad){
return Point(a.x*cos(rad)-a.y*sin(rad),a.x*sin(rad)+a.y*cos(rad));
}
Point GetLineIntersection(Point p,Point v,Point q,Point w){
Point u=p-q;
double t=Cross(w,u)/Cross(v,w);
return p+v*t;
}
struct Line{
Point p,v;
double ang;
Line(){}
Line(Point _p,Point _v):p(_p),v(_v){
ang=atan2(v.y,v.x);
}
Point point(double a){
return p+(v*a);
}
bool operator < (const Line &L) const{
return ang<L.ang;
}
};
Point GetLineIntersection(Line a,Line b){
return GetLineIntersection(a.p,a.v,b.p,b.v);
}
struct Circle{
Point c;
double r;
Circle(){}
Circle(Point _c,double _r):c(_c),r(_r){}
Point point(double a){
return Point(c.x+cos(a)*r,c.y+sin(a)*r);
}
};
Circle C[200];
bool vis[200];
vector<double> pp[200];
int GetCircleCircleIntersection(int s1,int s2){
Circle c1=C[s1],c2=C[s2];
double d=Length(c1.c-c2.c);
if(dcmp(d)==0){
if(dcmp(c1.r-c2.r)==0)return -1;
return 0;
}
if(dcmp(c1.r+c2.r-d)<0)return 0;
if(dcmp(fabs(c1.r-c2.r)-d)>0)return 0;
double a=angle(c2.c-c1.c);
double da=acos((c1.r*c1.r+d*d-c2.r*c2.r)/(2*c1.r*d));
Point p1=c1.point(a-da),p2=c1.point(a+da);
if(p1==p2)return 1;
pp[s1].push_back(a+da);
pp[s1].push_back(a-da);
return 2;
}
bool PointInCircle(Point p, Circle C){
double dist = Length(p - C.c);
if(dcmp(dist - C.r) > 0) return 0;
else return 1;
}
bool CircleInCircle(Circle A, Circle B){
double cdist = Length(A.c - B.c);
double rdiff = B.r - A.r;
if(dcmp(A.r - B.r) <= 0 && dcmp(cdist - rdiff) <= 0) return 1;
return 0;
}
int main()
{
//freopen("data.in","r",stdin);
//freopen("data.out","w",stdout);
int n;
while(~scanf("%d",&n)&&n){
memset(vis,0,sizeof(vis));
for(int i=0;i<n;i++)pp[i].clear();
for(int i=0;i<n;i++)
scanf("%lf%lf%lf",&C[i].c.x,&C[i].c.y,&C[i].r);
for(int i=0;i<n;i++)
for(int j=0;j<n;j++){
if(i==j)continue;
GetCircleCircleIntersection(i,j);
}
for(int i=0;i<n;i++){
sort(pp[i].begin(),pp[i].end());
pp[i].resize(unique(pp[i].begin(),pp[i].end())-pp[i].begin());
}
for(int i=0;i<n;i++){
if(pp[i].size()==0){
bool ok=1;
for(int j=i+1;j<n;j++)
if(CircleInCircle(C[i],C[j])){
ok=0;break;
}
if(ok)vis[i]=1;
// cout<<"han->1"<<endl;
}
else{
// cout<<"han->2"<<endl;
int sz=pp[i].size();
pp[i].push_back(pp[i][0]);
for(int j=0;j<sz;j++){
Point dd=C[i].point((pp[i][j]+pp[i][j+1])/2);
bool ok=1;
for(int k=i+1;k<n;k++)
if(PointInCircle(dd,C[k])){
// cout<<dd.x<<" "<<dd.y<<" "<<k<<endl;
ok=0;break;
}
if(ok){
vis[i]=1;
for(int k=i-1;k>=0;k--)
if(PointInCircle(dd,C[k])){
vis[k]=1;break;
}
}
}
}
}
int ans=0;
// cout<<"han ";for(int i=0;i<n;i++)cout<<vis[i]<<" ";cout<<endl;
for(int i=0;i<n;i++)
if(vis[i])ans++;
cout<<ans<<endl;
}
return 0;
}
版权声明:本文博主原创文章。博客,未经同意不得转载。
POJ 1418 基本操作和圆 离散弧的更多相关文章
- POJ:2528(Mayor's posters)离散化成段更新+简单哈希
http://poj.org/problem?id=2528 Description The citizens of Bytetown, AB, could not stand that the ca ...
- [POJ] 3277 .City Horizon(离散+线段树)
来自这两篇博客的总结 http://blog.csdn.net/SunnyYoona/article/details/43938355 http://m.blog.csdn.net/blog/mr_z ...
- (中等) POJ 2528 Mayor's posters , 离散+线段树。
Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral electio ...
- poj 1418 Viva Confetti
Viva Confetti Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 1025 Accepted: 422 Desc ...
- poj 3675 Telescope (圆与多边形面积交)
3675 -- Telescope 再来一题.这题的代码还是继续完全不看模板重写的. 题意不解释了,反正就是一个单纯的圆与多边形的交面积. 这题的精度有点搞笑.我用比较高的精度来统计面积,居然wa了. ...
- POJ 1981 Circle and Points (扫描线)
[题目链接] http://poj.org/problem?id=1981 [题目大意] 给出平面上一些点,问一个半径为1的圆最多可以覆盖几个点 [题解] 我们对于每个点画半径为1的圆,那么在两圆交弧 ...
- Halcon 10.0:Sample 分割边缘拟合圆Circles.hdev
处理流程:快速二值化(区域)->获取区域边缘->截取边缘->膨胀边缘区域(定位)->定位区域进行边缘检测->边缘分割:线和圆->选择属性为圆的弧->拟合圆 * ...
- Canvas 画圆
原文地址:http://hi.baidu.com/lj2tj/item/557d8d1a65adfa721009b58b --------------------------------------- ...
- HDU4667(有错)
正规的做法是找切点.三角形三个顶点分别对圆作切线,然后求切点(2个).两圆之间也要求切点(4个). 扯淡了这就..麻烦的要命.. 下面是写了一半的代码.. void process_circle(po ...
随机推荐
- 2.JPA学习总结
转自:https://shmilyaw-hotmail-com.iteye.com/blog/1969190 前言 最近在做一个项目的时候因为牵涉到要对数据库的操作,在最开始实现的时候采用了直接的JD ...
- 删除dataGridview中选中的一行或多行
一.实现的功能:可以删除一行或者多行数据,并在删除前提醒是否确定进行删除! DialogResult RSS = MessageBox.Show(this,"确定要删除选中行数据码?&quo ...
- 微信支付v2开发(4) 交易通知
本文介绍如何使用JS API支付时如何获得交易通知. 一.交易通知 用户在成功完成支付后,微信后台通知(POST)商户服务器(notify_url)支付结果.商户可以使用notify_url的通知结果 ...
- Python 极简教程(二)编码工具
Python 的编码工具很多.目前最流行的是 pycharm,关于 pycharm 的安装使用请参考 PyCharm安装使用教程. 而学习过程中,我觉得最好用的,还是 Python 自带的练习工具 I ...
- x264代码剖析(十五):核心算法之宏块编码中的变换编码
x264代码剖析(十五):核心算法之宏块编码中的变换编码 为了进一步节省图像的传输码率.须要对图像进行压缩,通常採用变换编码及量化来消除图像中的相关性以降低图像编码的动态范围.本文主要介绍变换编码的相 ...
- (转)利用openfiler实现iSCSI
转自:http://czmmiao.iteye.com/blog/1735417 openfiler openfiler是一个基于浏览器的网络存储管理工具.来自于Linux系统.openfiler在一 ...
- ARCGIS动态画点
小马哥淡定 原文 ARCGIS动态画点 private void DrawPointOnMap(double x, double y,bool clear) { IMapControl2 pMapCt ...
- [Immutable.js] Updating nested values with ImmutableJS
The key to being productive with Immutable JS is understanding how to update values that are nested. ...
- 对touch事件传递的简单理解
对View事件传递的理解.看的这篇. 对事件传递有了大致的了解. onInterceptTouchEvent 函数决定是否将事件拦截,拦截之后,该控件的全部子控件接收不到这个事件.onTouchEve ...
- 关于LayoutParams 分类: H1_ANDROID 2013-10-27 20:34 776人阅读 评论(0) 收藏
每一个布局均有一个叫LayoutParams的内部类,如: LinearLayout.LayoutParams RelativeLayout.LayoutParams AbsoluteLayout ...