紫书 习题 8-16 UVa 1618 (中途相遇法)
暴力n的四次方, 然而可以用中途相遇法的思想, 分左边两个数和右边两个数来判断, 最后合起来判断。
一边是n平方logn, 合起来是n平方logn(枚举n平方, 二分logn)
(1)两种比较方式是相反的, 所以第二次可以直接把数组倒过来做, 代码可以省很多。
(2) 我们现在来讨论3 1 4 2这种情况(1最小, 2次小以此类推)
大家观察可以发现, 中间两个数字刚好是最大和最小。所以我们可以枚举中间两个数, 往两边找。
先看1, 我们可以预处理出每一个数左侧比它大的数字有哪些。然后找到1的时候, 就可以在左侧二分
找到大于1而小于4的最大数字是多少, 最大是因为这个数要大于2, 所以最大肯定是最优的。
同理右边也可以预处理出右侧小于它的数字有哪些, 然后二分小于4而大于1的最小的数字是什么
最后合起来判断, 如果左边找出的数字大于右边, 那么就找出了解。
(3)二分一定一定一定要注意找不到的情况, 因此WA了n次
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std;
const int MAXN = 5123;
int a[MAXN], n;
vector<int> l[MAXN], r[MAXN];
bool judge()
{
REP(i, 0, n) //预处理
{
l[i].clear(); r[i].clear();
REP(j, i + 1, n) if(a[j] < a[i]) r[i].push_back(a[j]);
for(int j = i - 1; j >= 0; j--) if(a[j] > a[i]) l[i].push_back(a[j]);
sort(l[i].begin(), l[i].end()); //为了后面二分
sort(r[i].begin(), r[i].end());
}
REP(i, 1, n)
REP(j, i + 1, n - 1)
if(a[i] < a[j] && l[i].size() > 0 && r[j].size() > 0)
{
int t1 = lower_bound(l[i].begin(), l[i].end(), a[j]) - l[i].begin();
int t2 = lower_bound(r[j].begin(), r[j].end(), a[i]) - r[j].begin();
if(t1 == 0 || t2 == r[j].size()) continue; //根本找不到就舍去
if(l[i][t1-1] > r[j][t2]) return true;
}
return false;
}
int main()
{
int T;
scanf("%d", &T);
while(T--)
{
scanf("%d", &n);
REP(i, 0, n) scanf("%d", &a[i]);
if(judge()) { puts("YES"); continue; }
reverse(a, a + n); //翻转
if(judge()) { puts("YES"); continue; }
puts("NO");
}
return 0;
}
紫书 习题 8-16 UVa 1618 (中途相遇法)的更多相关文章
- UVa 1152 (中途相遇法) 4 Values whose Sum is 0
题意: 要从四个数组中各选一个数,使得这四个数之和为0,求合法的方案数. 分析: 首先枚举A+B所有可能的值,排序. 然后枚举所有-C-D的值在其中用二分法查找. #include <cstdi ...
- 紫书 例题8-3 UVa 1152(中途相遇法)
这道题要逆向思维, 就是求出答案的一部分, 然后反过去去寻找答案存不存在. 其实很多其他题都用了这道题目的方法, 自己以前都没有发现, 这道题专门考这个方法.这个方法可以没有一直往下求, 可以省去很多 ...
- uva 6757 Cup of Cowards(中途相遇法,貌似)
uva 6757 Cup of CowardsCup of Cowards (CoC) is a role playing game that has 5 different characters (M ...
- 【uva 1152】4 Values Whose Sum is Zero(算法效率--中途相遇法+Hash或STL库)
题意:给定4个N元素几个A,B,C,D,要求分别从中选取一个元素a,b,c,d使得a+b+c+d=0.问有多少种选法.(N≤4000,D≤2^28) 解法:首先我们从最直接最暴力的方法开始思考:四重循 ...
- 高效算法——J 中途相遇法,求和
---恢复内容开始--- J - 中途相遇法 Time Limit:9000MS Memory Limit:0KB 64bit IO Format:%lld & %llu Su ...
- 【UVALive】2965 Jurassic Remains(中途相遇法)
题目 传送门:QWQ 分析 太喵了~~~~~ 还有中途相遇法这种东西的. 嗯 以后可以优化一些暴力 详情左转蓝书P58 (但可能我OI生涯中都遇不到正解是这个的题把...... 代码 #include ...
- LA 2965 Jurassic Remains (中途相遇法)
Jurassic Remains Paleontologists in Siberia have recently found a number of fragments of Jurassic pe ...
- HDU 5936 Difference 【中途相遇法】(2016年中国大学生程序设计竞赛(杭州))
Difference Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total ...
- 【中途相遇法】【STL】BAPC2014 K Key to Knowledge (Codeforces GYM 100526)
题目链接: http://codeforces.com/gym/100526 http://acm.hunnu.edu.cn/online/?action=problem&type=show& ...
随机推荐
- underscore的简单了解
1.underscore:一个封装好的js工具库,它提供了一整套函数式编程的使用功能,但是没有扩展任何js内置对象.它解决了这个问题:如果我面对一个空白的HTML,并希望立即开始工作,我需要什么? 2 ...
- layui select change
<select lay-filter="test"></select> layui.use([ 'form'], function() { var form ...
- echarts如何更改表格主题颜色
vue项目中,需要使用echarts时,需要根据UI设计图进行图标颜色修改 方法一: 1.在script中引入echarts以及主题样式: import echarts from 'echarts'; ...
- [luogu] P3333 [ZJOI2013]丽洁体(贪心)
P3333 [ZJOI2013]丽洁体 题目描述 平时的练习和考试中,我们经常会碰上这样的题:命题人给出一个例句,要我们类比着写句子.这种往往被称为仿写的题,不单单出现在小学生的考试中,也有时会出现在 ...
- javascript深度克隆函数deepClone
javascript深度克隆函数deepClone function deepClone(obj) { var _toString = Object.prototype.toString; // nu ...
- C#-常用对象-思维导图
C#-常用对象-思维导图 链接:http://pan.baidu.com/s/1jHNgS78 密码:3i74 如有错误,请告知我!
- COGS——T 886. [USACO 4.2] 完美的牛栏
http://www.cogs.pro/cogs/problem/problem.php?pid=886 ★★☆ 输入文件:stall4.in 输出文件:stall4.out 简单对比时间 ...
- [ReactVR] Start a Virtual Reality Project Using the React VR CLI
We will learn how to set up a React VR project, run the development mode with hot reloading, and tak ...
- SQL学习之使用order by 依照指定顺序排序或自己定义顺序排序
我们通常须要依据客户需求对于查询出来的结果给客户提供自己定义的排序方式,那么我们通常sql须要实现方式都有哪些,參考很多其它资料总结例如以下(不完好的和错误望大家指出): 一.假设我们仅仅是对于在某个 ...
- yii自己定义CLinkPager分页
在components中自己定义LinkPager.并继承CLinkPager 代码例如以下: <? php /** * CLinkPager class file. * * @author l ...