转自原文 MATLAB曲线拟合

曲线拟合

实例:温度曲线问题

气象部门观测到一天某些时刻的温度变化数据为:

t

0

1

2

3

4

5

6

7

8

9

10

T

13

15

17

14

16

19

26

24

26

27

29

试描绘出温度变化曲线。

曲线拟合就是计算出两组数据之间的一种函数关系,由此可描绘其变化曲线及估计非采集数据对应的变量信息。

曲线拟合有多种方式,下面是一元函数采用最小二乘法对给定数据进行多项式曲线拟合,最后给出拟合的多项式系数。

1.线性拟合函数:regress()

调用格式:  b=regress(y,X)

                     [b,bint,r,rint,stats]= regress(y,X)

                     [b,bint,r,rint,stats]= regress(y,X,alpha)

说明:b=regress(y,X)返回X与y的最小二乘拟合值,及线性模型的参数值β、ε。该函数求解线性模型:

y=Xβ+ε

β是p´1的参数向量;ε是服从标准正态分布的随机干扰的n´1的向量;y为n´1的向量;X为n´p矩阵。

bint返回β的95%的置信区间。r中为形状残差,rint中返回每一个残差的95%置信区间。Stats向量包含R2统计量、回归的F值和p值。

例1:设y的值为给定的x的线性函数加服从标准正态分布的随机干扰值得到。即y=10+x+ε ;求线性拟合方程系数。

程序: x=[ones(10,1) (1:10)'];

      y=x*[10;1]+normrnd(0,0.1,10,1);

      [b,bint]=regress(y,x,0.05)

结果:  x =

     1     1

1     2

1     3

1     4

1     5

1     6

1     7

1     8

1     9

1    10

y =

10.9567

11.8334

13.0125

14.0288

14.8854

16.1191

17.1189

17.9962

19.0327

20.0175

b =

9.9213

1.0143

bint =

9.7889   10.0537

0.9930    1.0357

即回归方程为:y=9.9213+1.0143x

2.多项式曲线拟合函数:polyfit( )

调用格式:  p=polyfit(x,y,n)

                     [p,s]= polyfit(x,y,n)

说明:x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。矩阵s用于生成预测值的误差估计。(见下一函数polyval)

例2由离散数据

x

0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1

y

.3

.5

1

1.4

1.6

1.9

.6

.4

.8

1.5

2

拟合出多项式。

程序:

x=0:.1:1;

            y=[.3 .5 1 1.4 1.6 1.9 .6 .4 .8 1.5 2];

            n=3;

            p=polyfit(x,y,n)

            xi=linspace(0,1,100);

            z=polyval(p,xi); %多项式求值

            plot(x,y,'o',xi,z,'k:',x,y,'b')

            legend('原始数据','3阶曲线')

结果:

p =

16.7832  -25.7459   10.9802   -0.0035

多项式为:16.7832x3-25.7459x2+10.9802x-0.0035

曲线拟合图形:

如果是n=6,则如下图:

也可由函数给出数据。

例3x=1:20,y=x+3*sin(x)

程序:

x=1:20;

       y=x+3*sin(x);

       p=polyfit(x,y,6)

       xi=linspace(1,20,100);

       z=polyval(p,xi);     %多项式求值函数

plot(x,y,'o',xi,z,'k:',x,y,'b')

       legend('原始数据','6阶曲线')

结果:

p =

0.0000   -0.0021    0.0505   -0.5971    3.6472   -9.7295   11.3304

再用10阶多项式拟合

      程序:x=1:20;

y=x+3*sin(x);

p=polyfit(x,y,10)

xi=linspace(1,20,100);

z=polyval(p,xi);

plot(x,y,'o',xi,z,'k:',x,y,'b')

legend('原始数据','10阶多项式')

结果:p =

Columns 1 through 7

0.0000   -0.0000    0.0004   -0.0114    0.1814   -1.8065   11.2360

Columns 8 through 11

-42.0861   88.5907  -92.8155   40.2671

可用不同阶的多项式来拟合数据,但也不是阶数越高拟合的越好。

3.         多项式曲线求值函数:polyval( )

调用格式:  y=polyval(p,x)

                     [y,DELTA]=polyval(p,x,s)

说明:y=polyval(p,x)为返回对应自变量x在给定系数P的多项式的值。

[y,DELTA]=polyval(p,x,s) 使用polyfit函数的选项输出s得出误差估计Y DELTA。它假设polyfit函数数据输入的误差是独立正态的,并且方差为常数。则Y DELTA将至少包含50%的预测值。

4.         多项式曲线拟合的评价和置信区间函数:polyconf( )

调用格式:  [Y,DELTA]=polyconf(p,x,s)

                     [Y,DELTA]=polyconf(p,x,s,alpha)

说明:[Y,DELTA]=polyconf(p,x,s)使用polyfit函数的选项输出s给出Y的95%置信区间Y DELTA。它假设polyfit函数数据输入的误差是独立正态的,并且方差为常数。1-alpha为置信度。

例4给出上面例1的预测值及置信度为90%的置信区间。

程序:   x=0:.1:1;

        y=[.3 .5 1 1.4 1.6 1.9 .6 .4 .8 1.5 2]

        n=3;

        [p,s]=polyfit(x,y,n)

        alpha=0.05;

       [Y,DELTA]=polyconf(p,x,s,alpha)

       结果:  

p =

16.7832  -25.7459   10.9802   -0.0035

s =

R:
[4x4 double]
  df: 7
normr: 1.1406

Y =

Columns 1 through 9

-0.0035   
0.8538   
1.2970   
1.4266   
1.3434   
1.1480   
0.9413   
0.8238   
0.8963

Columns 10 through 11

1.2594   
2.0140

5.        
稳健回归函数:robust( )

稳健回归是指此回归方法相对于其他回归方法而言,受异常值的影响较小。

调用格式: 
b=robustfit(x,y)

                    
[b,stats]=robustfit(x,y)

                    
[b,stats]=robustfit(x,y,’wfun’,tune,’const’)

说明:b返回系数估计向量;stats返回各种参数估计;’wfun’指定一个加权函数;tune为调协常数;’const’的值为’on’(默认值)时添加一个常数项;为’off
’时忽略常数项。

例5演示一个异常数据点如何影响最小二乘拟合值与稳健拟合。首先利用函数y=10-2x加上一些随机干扰的项生成数据集,然后改变一个y的值形成异常值。调用不同的拟合函数,通过图形观查影响程度。

程序:x=(1:10)’;

y=10-2*x+randn(10,1);

y(10)=0;

bls=regress(y,[ones(10,1) x]) %线性拟合

brob=robustfit(x,y) %稳健拟合

scatter(x,y)

hold on

plot(x,bls(1)+bls(2)*x,’:’)

plot(x,brob(1)+brob(2)*x,’r‘)

结果 bls =

8.4452

-1.4784

brob =

10.2934

-2.0006

分析:稳健拟合(实线)对数据的拟合程度好些,忽略了异常值。最小二乘拟合(点线)则受到异常值的影响,向异常值偏移。

6.        
向自定义函数拟合

对于给定的数据,根据经验拟合为带有待定常数的自定义函数。

所用函数:nlinfit( )

调用格式: 
[beta,r,J]=nlinfit(X,y,’fun’,betao)

说明:beta返回函数’fun’中的待定常数;r表示残差;J表示雅可比矩阵。X,y为数据;‘fun’自定义函数;beta0待定常数初值。

例6在化工生产中获得的氯气的级分y随生产时间x下降,假定在x≥8时,y与x之间有如下形式的非线性模型:

现收集了44组数据,利用该数据通过拟合确定非线性模型中的待定常数。

x           
y                  
x           
y                  
x           
y

8           
0.49              
16          
0.43              
28          
0.41

8           
0.49              
18          
0.46              
28          
0.40

10          
0.48              
18          
0.45              
30          
0.40

10          
0.47              
20          
0.42              
30          
0.40

10          
0.48              
20   
      
0.42              
30          
0.38

10          
0.47              
20          
0.43              
32          
0.41

12          
0.46              
20          
0.41              
32          
0.40

12          
0.46              
22          
0.41              
34          
0.40

12          
0.45              
22          
0.40              
36          
0.41

12          
0.43              
24          
0.42              
36          
0.36

14          
0.45              
24          
0.40              
38          
0.40

14          
0.43              
24          
0.40              
38          
0.40

14          
0.43              
26          
0.41              
40          
0.36

16          
0.44              
26          
0.40              
42          
0.39

16          
0.43              
26          
0.41

首先定义非线性函数的m文件:fff6.m

function yy=model(beta0,x)

a=beta0(1);

b=beta0(2);

yy=a+(0.49-a)*exp(-b*(x-8));

      
程序:

x=[8.00 8.00 10.00 10.00 10.00 10.00 12.00 12.00 12.00 14.00
14.00 14.00... 

    
16.00 16.00 16.00 18.00 18.00 20.00 20.00 20.00 20.00 22.00 22.00
24.00...  

    
24.00 24.00 26.00 26.00 26.00 28.00 28.00 30.00 30.00 30.00 32.00
32.00...

    
34.00 36.00 36.00 38.00 38.00 40.00 42.00]';

  
y=[0.49 0.49 0.48 0.47 0.48 0.47 0.46 0.46 0.45 0.43 0.45 0.43 0.43
0.44 0.43...

    
0.43 0.46 0.42 0.42 0.43 0.41 0.41 0.40 0.42 0.40 0.40 0.41 0.40
0.41 0.41...

    
0.40 0.40 0.40 0.38 0.41 0.40 0.40 0.41 0.38 0.40 0.40 0.39
0.39]';

    
beta0=[0.30 0.02];

betafit = nlinfit(x,y,'sta67_1m',beta0)

结果:betafit =

0.3896

0.1011

即:a=0.3896 ,b=0.1011

MATLAB曲线拟合的更多相关文章

  1. [ZZ] MATLAB曲线拟合

    MATLAB曲线拟合 http://blog.sina.com.cn/s/blog_5db2286f0100enlo.html MATLAB软件提供了基本的曲线拟合函数的命令: 多项式函数拟合:  a ...

  2. 关于matlab曲线拟合的问题

    matlab 曲线拟合工具箱,app->curve fitting 可以使用generate直接产生代码,生成的是函数 该函数直接返回的结果为cfit格式,直接读取不了,网上有网友说可以采用y ...

  3. matlab 曲线拟合小记

    在matlab中经常需要对数据进行曲线拟合,如最常见的多项式拟合,一般可以通过cftool调用曲线拟合工具(curve fit tool),通过图形界面可以很方便的进行曲线拟合,但是有些时候也会遇到不 ...

  4. MATLAB曲线拟合函数

    一.多项式拟合 ployfit(x,y,n) :找到次数为 n 的多项式系数,对于数据集合 {(x_i,y_i)},满足差的平方和最小 [P,E] = ployfit(x,y,n) :返回同上的多项式 ...

  5. matlab 曲线拟合

    曲线拟合(转载:http://blog.sina.com.cn/s/blog_8e1548b80101c9iu.html) 补:拟合多项式输出为str 1.poly2str([p],'x') 2. f ...

  6. Matlab 曲线拟合之polyfit与polyval函数

    p=polyfit(x,y,n) [p,s]= polyfit(x,y,n) 说明:x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p.x必须是单调的.矩阵s用于生成预测值的误差估 ...

  7. 基于MATLAB的多项式数据拟合方法研究-毕业论文

    摘要:本论文先介绍了多项式数据拟合的相关背景,以及对整个课题做了一个完整的认识.接下来对拟合模型,多项式数学原理进行了详细的讲解,通过对文献的阅读以及自己的知识积累对原理有了一个系统的认识.介绍多项式 ...

  8. Matlab的曲线拟合工具箱CFtool使用简介

    http://phylab.fudan.edu.cn/doku.php?id=howtos:matlab:mt1-5 一. 单一变量的曲线逼近Matlab有一个功能强大的曲线拟合工具箱 cftool ...

  9. Matlab: 白噪声与曲线拟合

    在信号处理中常常需要用到曲线拟合,这里介绍一下利用最小二乘拟合一般曲线的方法,并对滤掉信号中白噪声的方法作些介绍. 为了测试拟合算法的好坏,先模拟出一个信号作为检验算法的例子: 用白噪声产生模拟信号: ...

随机推荐

  1. HDU 5762 Teacher Bo ( 暴力 )

    链接:传送门 题意:给出N个点( Xi , Yi ),和点的最远位置M,询问是否有这样的四个点 (A,B,C,D)(A<B,C<D,A≠CorB≠D) ,AB的曼哈顿路径长度等于CD的曼哈 ...

  2. freeswitch 编码协商

    编辑 /usr/local/freeswitch/conf/sip_profiles/internal.xml 添加注释     <param name="inbound-zrtp-p ...

  3. freeswitch GUI界面(portal)

    1.控制台 加载模块 load mod_xml_rpc 2.ip:8080/portal 进行登录  账号 : freeswitch  密码 : works 让模块随着freeswitch启动进行加载 ...

  4. 使用python备份指定目录并删除备份超过一定时长的文件

    #!/usr/bin/env python #-*- coding: utf-8 -*- """ @Project:Py @author: @Email: @Softwa ...

  5. [terry笔记]python FTP

    如下是作业,用python做一个ftp,主要利用socket. server端在linux下运行,在client端可以执行shell命令(静态的) 在client端输入get xxx,即可下载. 在c ...

  6. 监控myserver计数器

  7. tomcat的连接数与线程池

    在使用tomcat时,经常会遇到连接数.线程数之类的配置问题,要真正理解这些概念,必须先了解Tomcat的连接器(Connector). 在前面的文章中写到过:Connector的主要功能,是接收连接 ...

  8. cmd文件操作-添加

    新建文件夹 mkdir 文件名 mkdir wenjianjia 新建文件 type NUL > 文件名.文件类型

  9. bzoj2150: 部落战争(匈牙利)

    2150: 部落战争 题目:传送门 题解: 辣鸡数据..毁我AC率 先说做法,很容易就可以看出是二分图匹配的最小路径覆盖(可能是之前不久刚做过类似的题) 一开始还傻逼逼的去直接连边然后准备跑floyd ...

  10. Find Blank Cell in Excel

    Click Home > Find & Select > Go To Special. In the Go To Special dialog box, check the Bla ...