洛谷—— P1962 斐波那契数列
https://www.luogu.org/problem/show?pid=1962
题目背景
大家都知道,斐波那契数列是满足如下性质的一个数列:
• f(1) = 1
• f(2) = 1
• f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数)
题目描述
请你求出 f(n) mod 1000000007 的值。
输入输出格式
输入格式:
·第 1 行:一个整数 n
输出格式:
第 1 行: f(n) mod 1000000007 的值
输入输出样例
5
5
10
55
说明
对于 60% 的数据: n ≤ 92
对于 100% 的数据: n在long long(INT64)范围内。
矩阵乘法优化。、
#include <cstdio> #define LL long long
const LL mod(); inline void read(LL &x)
{
x=; register char ch=getchar();
for(; ch>''||ch<''; ) ch=getchar();
for(; ch>=''&&ch<=''; ch=getchar()) x=x*+ch-'';
} LL n,m;
struct Matrix_fb {
LL e[][];
void init_base()
{
e[][]=;
e[][]=;
e[][]=;
e[][]=;
}
void init_ans()
{
e[][]=e[][]=;
}
Matrix_fb operator * (Matrix_fb x) const
{
Matrix_fb tmp;
for(int i=; i<; ++i)
for(int j=; j<; ++j)
{
tmp.e[i][j]=;
for(int k=; k<; ++k)
tmp.e[i][j]+=e[i][k]*x.e[k][j],tmp.e[i][j]%=mod;
}
return tmp;
}
}ans,base; int AC()
{
// freopen("spfa.in","r",stdin);
// freopen("spfa.out","w",stdout);
read(n);
if(n==||n==) { puts(""); return ; }
ans.init_ans(); base.init_base();
for( n-=; n; n>>=,base=base*base)
if(n&) ans=ans*base;
printf("%lld\n",ans.e[][]);
return ;
} int Aptal=AC();
int main(){;}
单位矩阵 在第一行
#include <cstdio> #define LL long long
const LL mod(); inline void read(LL &x)
{
x=; register char ch=getchar();
for(; ch>''||ch<''; ) ch=getchar();
for(; ch>=''&&ch<=''; ch=getchar()) x=x*+ch-'';
} LL n,m;
struct Matrix_fb {
LL e[][];
void init_base()
{
e[][]=;
e[][]=;
e[][]=;
e[][]=;
}
void init_ans()
{
e[][]=e[][]=;
}
Matrix_fb operator * (Matrix_fb x) const
{
Matrix_fb tmp;
for(int i=; i<; ++i)
for(int j=; j<; ++j)
{
tmp.e[i][j]=;
for(int k=; k<; ++k)
tmp.e[i][j]+=e[i][k]*x.e[k][j],tmp.e[i][j]%=mod;
}
return tmp;
}
}ans,base; LL GCD(LL a,LL b)
{
return !b ? a : GCD(b,a%b);
} int AC()
{
// freopen("spfa.in","r",stdin);
// freopen("spfa.out","w",stdout);gcd-=2
read(n);
if(n==||n==) { puts(""); return ; }
ans.init_ans(); base.init_base();
for( ; n; n>>=,base=base*base)
if(n&) ans=ans*base;
printf("%lld\n",ans.e[][]);
return ;
} int Aptal=AC();
int main(){;}
单位矩阵,在对角线
洛谷—— P1962 斐波那契数列的更多相关文章
- 洛谷P1962 斐波那契数列【矩阵运算】
洛谷P1962 斐波那契数列[矩阵运算] 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) ( ...
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- 洛谷——P1962 斐波那契数列
P1962 斐波那契数列 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 ...
- 洛谷P1962 斐波那契数列(矩阵快速幂)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
- 洛谷P1962 斐波那契数列题解
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
- 【洛谷P1962 斐波那契数列】矩阵快速幂+数学推导
来提供两个正确的做法: 斐波那契数列双倍项的做法(附加证明) 矩阵快速幂 一.双倍项做法 在偶然之中,在百度中翻到了有关于斐波那契数列的词条(传送门),那么我们可以发现一个这个规律$ \frac{F_ ...
- 洛谷 P1962 斐波那契数列
题目链接:https://www.luogu.org/problemnew/show/P1962 题目大意: 略 分析: 由于数据规模很大,需要用矩阵快速幂来解. 代码如下: #pragma GCC ...
- 题解——洛谷P1962 斐波那契数列(矩阵乘法)
矩阵乘法加速线性递推的典型 大概套路就是先构造一个矩阵\( F \)使得另一初始矩阵\( A \)乘以\( F^{x} \)能够得出第n项 跑的飞快 虽然我也不知道那个矩阵要怎么构造 或许就像我使用了 ...
- 洛谷P1962 斐波那契数列
传送门 不难得到状态转移矩阵 然后带进去乱搞 //minamoto #include<iostream> #include<cstdio> #include<cstrin ...
随机推荐
- How to Integrate .NET Projects with Jenkins
https://www.swtestacademy.com/jenkins-dotnet-integration/ 8) Unit Tests and Test Coverage Settings D ...
- 两个向量之间的欧式距离及radial-basis-functions(RBF)
template <class DataType1, class DataType2>double EuclideanDistance(std::vector<DataType1&g ...
- mybatis的二级缓存
在mybatis主配置文件里configuration标签里添加 <settings> <setting name="cacheEnabled" value=&q ...
- Nginx报错-找不到路径
前言 最近在git bash里输入命令启动Nginx服务,总提示找不到路径,令我困惑不已 我反复检查安装路径和输入命令,确认无误 小技巧:复制路径可直接ctrl+c后在git ba ...
- 4.Flask-alembic数据迁移工具
alembic是用来做ORM模型与数据库的迁移与映射.alembic使用方式跟git有点类似,表现在两个方面,第一个,alemibi的所有命令都是以alembic开头: 第二,alembic的迁移文件 ...
- (转)Win10 TensorFlow(gpu)安装详解
Win10 TensorFlow(gpu)安装详解 写在前面:TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理.Tensor(张量)意味着 ...
- 判断wifi是2.4G还是5G
1.WifiInfo 源码: int mFrequency=wifiInfo.getFrequency(); /** * @hide * TODO: makes real freq boundarie ...
- 3A课程笔记分享_StudyJams_2017
课程3A-面向对象编程(上) 概述 面向对象的思想在当今的软件开发中占据着主导地位. Java是一门完全面向对象的语言,是一种天然的分布式互联网软件的开发语言,在当今企业级应用中占据绝对领先地位,也是 ...
- ★Java语法(六)——————————分支语句
1. if 语句 格式用法: if(布尔表达式) { 语句: } 2. if……else 语句 格式用法: if(表达式) { 语句1: } else { 语句2: } 3.if……else i ...
- ASP.NET MVC5 网站开发实践(一)
一.开发环境 1.开发环境: Visual Studio 2013 2.数据库:Sql Server 2012 3.代码管理:TFS(微软免费提供的) 说明:VS2013与vs2012感觉变化不大,我 ...