https://www.luogu.org/problem/show?pid=1962

题目背景

大家都知道,斐波那契数列是满足如下性质的一个数列:

• f(1) = 1

• f(2) = 1

• f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数)

题目描述

请你求出 f(n) mod 1000000007 的值。

输入输出格式

输入格式:

·第 1 行:一个整数 n

输出格式:

第 1 行: f(n) mod 1000000007 的值

输入输出样例

输入样例#1:

5
输出样例#1:

5
输入样例#2:

10
输出样例#2:

55

说明

对于 60% 的数据: n ≤ 92

对于 100% 的数据: n在long long(INT64)范围内。

矩阵乘法优化。、

 #include <cstdio>

 #define LL long long
const LL mod(); inline void read(LL &x)
{
x=; register char ch=getchar();
for(; ch>''||ch<''; ) ch=getchar();
for(; ch>=''&&ch<=''; ch=getchar()) x=x*+ch-'';
} LL n,m;
struct Matrix_fb {
LL e[][];
void init_base()
{
e[][]=;
e[][]=;
e[][]=;
e[][]=;
}
void init_ans()
{
e[][]=e[][]=;
}
Matrix_fb operator * (Matrix_fb x) const
{
Matrix_fb tmp;
for(int i=; i<; ++i)
for(int j=; j<; ++j)
{
tmp.e[i][j]=;
for(int k=; k<; ++k)
tmp.e[i][j]+=e[i][k]*x.e[k][j],tmp.e[i][j]%=mod;
}
return tmp;
}
}ans,base; int AC()
{
// freopen("spfa.in","r",stdin);
// freopen("spfa.out","w",stdout);
read(n);
if(n==||n==) { puts(""); return ; }
ans.init_ans(); base.init_base();
for( n-=; n; n>>=,base=base*base)
if(n&) ans=ans*base;
printf("%lld\n",ans.e[][]);
return ;
} int Aptal=AC();
int main(){;}

单位矩阵 在第一行

 #include <cstdio>

 #define LL long long
const LL mod(); inline void read(LL &x)
{
x=; register char ch=getchar();
for(; ch>''||ch<''; ) ch=getchar();
for(; ch>=''&&ch<=''; ch=getchar()) x=x*+ch-'';
} LL n,m;
struct Matrix_fb {
LL e[][];
void init_base()
{
e[][]=;
e[][]=;
e[][]=;
e[][]=;
}
void init_ans()
{
e[][]=e[][]=;
}
Matrix_fb operator * (Matrix_fb x) const
{
Matrix_fb tmp;
for(int i=; i<; ++i)
for(int j=; j<; ++j)
{
tmp.e[i][j]=;
for(int k=; k<; ++k)
tmp.e[i][j]+=e[i][k]*x.e[k][j],tmp.e[i][j]%=mod;
}
return tmp;
}
}ans,base; LL GCD(LL a,LL b)
{
return !b ? a : GCD(b,a%b);
} int AC()
{
// freopen("spfa.in","r",stdin);
// freopen("spfa.out","w",stdout);gcd-=2
read(n);
if(n==||n==) { puts(""); return ; }
ans.init_ans(); base.init_base();
for( ; n; n>>=,base=base*base)
if(n&) ans=ans*base;
printf("%lld\n",ans.e[][]);
return ;
} int Aptal=AC();
int main(){;}

单位矩阵,在对角线

洛谷—— P1962 斐波那契数列的更多相关文章

  1. 洛谷P1962 斐波那契数列【矩阵运算】

    洛谷P1962 斐波那契数列[矩阵运算] 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) ( ...

  2. 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

    P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...

  3. 洛谷——P1962 斐波那契数列

    P1962 斐波那契数列 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 ...

  4. 洛谷P1962 斐波那契数列(矩阵快速幂)

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...

  5. 洛谷P1962 斐波那契数列题解

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...

  6. 【洛谷P1962 斐波那契数列】矩阵快速幂+数学推导

    来提供两个正确的做法: 斐波那契数列双倍项的做法(附加证明) 矩阵快速幂 一.双倍项做法 在偶然之中,在百度中翻到了有关于斐波那契数列的词条(传送门),那么我们可以发现一个这个规律$ \frac{F_ ...

  7. 洛谷 P1962 斐波那契数列

    题目链接:https://www.luogu.org/problemnew/show/P1962 题目大意: 略 分析: 由于数据规模很大,需要用矩阵快速幂来解. 代码如下: #pragma GCC ...

  8. 题解——洛谷P1962 斐波那契数列(矩阵乘法)

    矩阵乘法加速线性递推的典型 大概套路就是先构造一个矩阵\( F \)使得另一初始矩阵\( A \)乘以\( F^{x} \)能够得出第n项 跑的飞快 虽然我也不知道那个矩阵要怎么构造 或许就像我使用了 ...

  9. 洛谷P1962 斐波那契数列

    传送门 不难得到状态转移矩阵 然后带进去乱搞 //minamoto #include<iostream> #include<cstdio> #include<cstrin ...

随机推荐

  1. HDU 2665(主席树,无修改第k小)

    Kth number                                                 Time Limit: 15000/5000 MS (Java/Others)   ...

  2. hihoCoder 1033

    题目链接: http://hihocoder.com/problemset/problem/1033 听说这个题是xiaodao出的~~ 我们要知道dp其实就是一个记忆化搜索的过程,如果某个子结构之前 ...

  3. bzoj3297[USACO2011 Open]forgot(dp + string)

    3297: [USACO2011 Open]forgot Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 137  Solved: 94[Submit] ...

  4. Python 38 注册和修改密码

    一:注册系统服务 1.添加环境变量:桌面点击我的电脑------>右键属性------>双击高级系统设置------>点击环境变量------>找到在系统变量中的Path后双击 ...

  5. Chrome 最小化恢复之后部分黑屏

    解决办法:设置->显示高级设置->关闭硬件加速

  6. JVM命令参数指南

    1.调整最大堆内存 -Xmx 8192m 2.调整最小堆内存-Xmx 8192m3.设置虚拟机垃圾回收机制-XX:+UseG1GC4.收集垃圾日志信息-Xloggc:/D:gc.log5.OOM异常之 ...

  7. BN 详解和使用Tensorflow实现(参数理解)

    Tensorflow   BN具体实现(多种方式): 理论知识(参照大佬):https://blog.csdn.net/hjimce/article/details/50866313 补充知识: ① ...

  8. 基于Myeclipse+Axis2的WebService开发实录

    最近开始学习了下在Myeclipse开发工具下基于WebSerivce的开发,下面将相关相关关键信息予以记录 Myeclipse的安装,本文以Myeclipse2014-blue为开发环境,相关配置执 ...

  9. facade 模式和gateway模式的区别

    原文:http://stackoverflow.com/questions/4422211/what-is-the-difference-between-facade-and-gateway-desi ...

  10. 关于c# winform使用FidderCore.dll 遇到的一些问题,请求支援

    小弟最近再研究winform用fidder抓取包的过程.开始都很顺利,并且成功开启了代理网络.同时手机也设置代理,并且手机可以上网,而且电脑也能抓到手机的请求. 但是遇到两个问题. 1.,这里的关闭代 ...