参考文章 http://blog.51cto.com/lizhenliang/2095526
()硬件优化
如果有条件一定要SSD固态硬盘代替SAS机械硬盘,将RAID级别调整为RAID1+,相对于RAID1和RAID5有更好的读写性能,毕竟数据库的压力主要来自磁盘I/O方面。
Linux内核有一个特性,会从物理内存中划分出缓存区(系统缓存和数据缓存)来存放热数据,通过文件系统延迟写入机制,等满足条件时(如缓存区大小到达一定百分比或者执行sync命令)才会同步到磁盘。也就是说物理内存越大,分配缓存区越大,缓存数据越多。当然,服务器故障会丢失一定的缓存数据。建议物理内存至少富裕50%以上。 ()数据库配置优化
MySQL应用最广泛的有两种存储引擎:一个是MyISAM,不支持事务处理,读性能处理快,表级别锁。另一个是InnoDB,支持事务处理(ACID属性),设计目标是为大数据处理,行级别锁。 表锁:开销小,锁定粒度大,发生死锁概率高,相对并发也低。
行锁:开销大,锁定粒度小,发生死锁概率低,相对并发也高。 为什么会出现表锁和行锁呢?主要为保证数据完整性。举个例子,一个用户在操作一张表,其他用户也想操作这张表,那么就要等第一个用户操作完,其他用户才能操作,表锁和行锁就是这个作用。否则多个用户同时操作一张表,肯定会数据产生冲突或者异常。 根据这些方面看,使用InnoDB存储引擎是最好的选择,也是MySQL5.+版本默认存储引擎。每个存储引擎相关运行参数比较多,以下列出可能影响数据库性能的参数。 #######################################################################
公共参数默认值:
max_connections =
# 同时处理最大连接数,建议设置最大连接数是上限连接数的80%左右
sort_buffer_size = 2M
# 查询排序时缓冲区大小,只对order by和group by起作用,建议增大为16M
open_files_limit =
# 打开文件数限制,如果show global status like 'open_files'查看的值等于或者大于open_files_limit值时,程序会无法连接数据库或卡死
####################################################################### #######################################################################
InnoDB参数默认值:
innodb_buffer_pool_size = 128M
# 索引和数据缓冲区大小,建议设置物理内存的70%左右
innodb_buffer_pool_instances =
# 缓冲池实例个数,推荐设置4个或8个
innodb_flush_log_at_trx_commit =
# 关键参数,0代表大约每秒写入到日志并同步到磁盘,数据库故障会丢失1秒左右事务数据。1为每执行一条SQL后写入到日志并同步到磁盘,I/O开销大,执行完SQL要等待日志读写,效率低。2代表只把日志写入到系统缓存区,再每秒同步到磁盘,效率很高,如果服务器故障,才会丢失事务数据。对数据安全性要求不是很高的推荐设置2,性能高,修改后效果明显。
innodb_file_per_table = OFF
# 是否共享表空间,5.7+版本默认ON,共享表空间idbdata文件不断增大,影响一定的I/O性能。建议开启独立表空间模式,每个表的索引和数据都存在自己独立的表空间中,可以实现单表在不同数据库中移动。
innodb_log_buffer_size = 8M
# 日志缓冲区大小,由于日志最长每秒钟刷新一次,所以一般不用超过16M
####################################################################### #######################################################################
MyISAM参数默认值:
key_buffer_size = 16M
# 索引缓存区大小,一般设置物理内存的30-%
read_buffer_size = 128K
# 读操作缓冲区大小,建议设置16M或32M
query_cache_type = ON
# 打开查询缓存功能
query_cache_limit = 1M
# 查询缓存限制,只有1M以下查询结果才会被缓存,以免结果数据较大把缓存池覆盖
query_cache_size = 16M
# 查看缓冲区大小,用于缓存SELECT查询结果,下一次有同样SELECT查询将直接从缓存池返回结果,可适当成倍增加此值
####################################################################### ()系统内核参数优化
大多数MySQL都部署在linux系统上,所以操作系统的一些参数也会影响到MySQL性能,以下对Linux内核参数进行适当优化 net.ipv4.tcp_fin_timeout =
# TIME_WAIT超时时间,默认是60s
net.ipv4.tcp_tw_reuse =
# 1表示开启复用,允许TIME_WAIT socket重新用于新的TCP连接,0表示关闭
net.ipv4.tcp_tw_recycle =
# 1表示开启TIME_WAIT socket快速回收,0表示关闭
net.ipv4.tcp_max_tw_buckets =
# 系统保持TIME_WAIT socket最大数量,如果超出这个数,系统将随机清除一些TIME_WAIT并打印警告信息
net.ipv4.tcp_max_syn_backlog =
# 进入SYN队列最大长度,加大队列长度可容纳更多的等待连接
在Linux系统中,如果进程打开的文件句柄数量超过系统默认值1024,就会提示“too many files open”信息,所以要调整打开文件句柄限制。
重启永久生效:
# vi /etc/security/limits.conf
* soft nofile
* hard nofile
当前用户立即生效:
# ulimit -SHn ()数据库架构扩展
随着业务量越来越大,单台数据库服务器性能已无法满足业务需求,该考虑增加服务器扩展架构了。主要思想是分解单台数据库负载,突破磁盘I/O性能,热数据存放缓存中,降低磁盘I/O访问频率。 - 增加缓存
给数据库增加缓存系统,把热数据缓存到内存中,如果缓存中有请求的数据就不再去请求MySQL,减少数据库负载。缓存实现有本地缓存和分布式缓存,本地缓存是将数据缓存到本地服务器内存中或者文件中。分布式缓存可以缓存海量数据,扩展性好,主流的分布式缓存系统:memcached、redis,memcached性能稳定,数据缓存在内存中,速度很快,QPS理论可达8w左右。如果想数据持久化就选择用redis,性能不低于memcached。 - 主从复制与读写分离
在生产环境中,业务系统通常读多写少,可部署一主多从架构,主数据库负责写操作,并做双机热备,多台从数据库做负载均衡,负责读操作。主流的负载均衡器:LVS、HAProxy、Nginx。 怎么来实现读写分离呢?大多数企业是在代码层面实现读写分离,效率高。另一个种方式通过代理程序实现读写分离,企业中应用较少,会增加中间件消耗。主流中间件代理系统有MyCat、Atlas等。 在这种MySQL主从复制拓扑架构中,分散单台负载,大大提高数据库并发能力。如果一台从服务器能处理1500 QPS,那么3台就能处理4500 QPS,而且容易横向扩展。 有时,面对大量写操作的应用时,单台写性能达不到业务需求。就可以做双向复制(双主),但有个问题得注意:两台主服务器如果都对外提供读写操作,就可能遇到数据不一致现象,产生这个原因是程序有同时操作两台数据库几率,同时的更新操作会造成两台数据库数据发生冲突或者不一致。 可设置每个表ID字段自增唯一:auto_increment_increment和auto_increment_offset,也可以写算法生成随机唯一。
官方近两年推出的MGR(多主复制)集群也可以考虑下。 -3分库
分库是根据业务将数据库中相关的表分离到不同的数据库中,例如web、bbs、blog等库。如果业务量很大,还可将分离后的数据库做主从复制架构,进一步避免单库压力过大。 -4分表
数据量的日剧增加,数据库中某个表有几百万条数据,导致查询和插入耗时太长,怎么能解决单表压力呢?你应该考虑把这个表拆分成多个小表,来减轻单个表的压力,提高处理效率,此方式称为分表。 分表技术比较麻烦,要修改程序代码里的SQL语句,还要手动去创建其他表,也可以用merge存储引擎实现分表,相对简单许多。分表后,程序是对一个总表进行操作,这个总表不存放数据,只有一些分表的关系,以及更新数据的方式,总表会根据不同的查询,将压力分到不同的小表上,因此提高并发能力和磁盘I/O性能。 分表分为垂直拆分和水平拆分: 垂直拆分:把原来的一个很多字段的表拆分多个表,解决表的宽度问题。你可以把不常用的字段单独放到一个表中,也可以把大字段独立放一个表中,或者把关联密切的字段放一个表中。 水平拆分:把原来一个表拆分成多个表,每个表的结构都一样,解决单表数据量大的问题。 4.5 分区
分区就是把一张表的数据根据表结构中的字段(如range、list、hash等)分成多个区块,这些区块可以在一个磁盘上,也可以在不同的磁盘上,分区后,表面上还是一张表,但数据散列在多个位置,这样一来,多块硬盘同时处理不同的请求,从而提高磁盘I/O读写性能。 注:增加缓存、分库、分表和分区主要由程序猿或DBA来实现。 ()性能状态关键指标
专业术语:QPS(Queries Per Second,每秒查询书)和TPS(Transactions Per Second)
通过show status查看运行状态,会有300多条状态信息记录,其中有几个值帮可以我们计算出QPS和TPS,如下 Uptime:服务器已经运行的实际,单位秒
Questions:已经发送给数据库查询数
Com_select:查询次数,实际操作数据库的
Com_insert:插入次数
Com_delete:删除次数
Com_update:更新次数
Com_commit:事务次数
Com_rollback:回滚次数
那么,计算方法来了,基于Questions计算出QPS mysql> show global status like 'Questions';
mysql> show global status like 'Uptime';
QPS = Questions / Uptime
基于Com_commit和Com_rollback计算出TPS: mysql> show global status like 'Com_commit';
mysql> show global status like 'Com_rollback';
mysql> show global status like 'Uptime';
TPS = (Com_commit + Com_rollback) / Uptime
另一计算方式: 基于Com_select、Com_insert、Com_delete、Com_update计算出QPS:
mysql> show global status where Variable_name in('com_select','com_insert','com_delete','com_update');
等待1秒再执行,获取间隔差值,第二次每个变量值减去第一次对应的变量值,就是QPS。
TPS计算方法: mysql> show global status where Variable_name in('com_insert','com_delete','com_update');
计算TPS,就不算查询操作了,计算出插入、删除、更新四个值即可。
经网友对这两个计算方式的测试得出,当数据库中myisam表比较多时,使用Questions计算比较准确。当数据库中innodb表比较多时,则以Com_*计算比较准确。 5.2 开启慢查询日志
MySQL开启慢查询日志,分析出哪条SQL语句比较慢,支持动态开启: mysql> set global slow-query-log=on
# 开启慢查询日志
mysql> set global slow_query_log_file='/var/log/mysql/mysql-slow.log';
# 指定慢查询日志文件位置
mysql> set global log_queries_not_using_indexes=on;
# 记录没有使用索引的查询
mysql> set global long_query_time=;
# 只记录处理时间1s以上的慢查询
分析慢查询日志,可以使用MySQL自带的mysqldumpslow工具,分析的日志较为简单。
mysqldumpslow -t /var/log/mysql/mysql-slow.log
# 查看最慢的前三个查询
也可以使用percona公司的pt-query-digest工具,日志分析功能全面,可分析slow log、binlog、general log。
分析慢查询日志:pt-query-digest /var/log/mysql/mysql-slow.log
分析binlog日志:mysqlbinlog mysql-bin. >mysql-bin..sql
pt-query-digest --type=binlog mysql-bin..sql
分析普通日志:pt-query-digest --type=genlog localhost.log 5.3 数据库备份
备份数据库是最基本的工作,也是最重要的,否则后果很严重,你懂得!高频率的备份策略,选用一个稳定快速的工具至关重要。数据库大小在2G以内,建议使用官方的逻辑备份工具mysqldump。超过2G以上,建议使用percona公司的物理备份工具xtrabackup,否则慢的跟蜗牛似得。这两个工具都支持InnoDB存储引擎下热备,不影响业务读写操作。 5.4 数据库修复
有时候MySQL服务器突然断电、异常关闭,会导致表损坏,无法读取表数据。这时就可以用到MySQL自带的两个工具进行修复,myisamchk和mysqlcheck。前者只能修复MyISAM表,并且停止数据库,后者MyISAM和InnoDB都可以,在线修复。 注意:修复前最好先备份数据库。 myisamchk常用参数:
-f --force 强制修复,覆盖老的临时文件,一般不使用
-r --recover 恢复模式
-q --quik 快速恢复
-a --analyze 分析表
-o --safe-recover 老的恢复模式,如果-r无法修复,可以使用此参数试试
-F --fast 只检查没有正常关闭的表
例如:myisamchk -r -q *.MYI mysqlcheck常用参数:
-a --all-databases 检查所有的库
-r --repair 修复表
-c --check 检查表,默认选项
-a --analyze 分析表
-o --optimize 优化表
-q --quik 最快检查或修复表
-F --fast 只检查没有正常关闭的表
例如:mysqlcheck -r -q -uroot -p123456 weibo 5.5 MySQL服务器性能分析
掌握MySQL数据库这些优化技巧,事半功倍!
掌握MySQL数据库这些优化技巧,事半功倍!
重点关注: id:CPU利用率百分比,平均小于60%正常,但已经比较繁忙了。 wa:CPU等待磁盘IO响应时间,一般大于5说明磁盘读写量大。 总结
由于关系型数据库初衷设计限制,在大数据处理时会显得力不从心。因此NoSQL(非关系型数据库)火起来了,天生励志,具备分布式、高性能、高可靠等特性,弥补了关系型数据库某方面先天性不足,非常适合存储非结构化数据。主流NoSQL数据库有:MongoDB、HBase、Cassandra等。

Mysql优化理论知识的更多相关文章

  1. MySQL系列理论知识

    内容: 1.视图 2.触发器 3.事务 4.存储过程 5.内置函数 6.流程控制 7.索引与慢查询优化 —————————————————————————————— 1.视图: 1.视图是什么: 视图 ...

  2. Mysql Partition 理论知识总结

    简述: 本文内容主要 Giuseppe Maxia 曾在Mysql Conference & Expo 2010发表关于 <Mysql Partition in Mysql 5.1 &a ...

  3. MySQL优化方法论

    MySQL优化方法 主机 操作系统 数据库 应用 MySQL优化理论 吞吐率(Throughput) VS 延时(Latency) 吞吐率: 我们一般使用单位时间内服务器处理的请求数来描述其并发处理能 ...

  4. MySql学习(五) —— 数据库优化理论篇(一)

    一.数据库管理系统 数据库管理系统(Database Management System, DBMS) 衡量是否是数据库的标准: ACID:是指在数据库管理系统(DBMS)中事务所具有的四个特性: 1 ...

  5. Mysql优化方面的知识

    Mysql优化方面的知识 第一方面:30种mysql优化sql语句查询的方法 1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避 ...

  6. MySQL数据库基础知识及优化

    MySQL数据库基础知识及优化必会的知识点,你掌握了多少? 推荐阅读: 这些必会的计算机网络知识点你都掌握了吗 关于数据库事务和锁的必会知识点,你掌握了多少? 关于数据库索引,必须掌握的知识点 目录 ...

  7. MySql学习(六) —— 数据库优化理论(二) —— 查询优化技术

    逻辑查询优化包括的技术 1)子查询优化  2)视图重写  3)等价谓词重写  4)条件简化  5)外连接消除  6)嵌套连接消除  7)连接消除  8)语义优化 9)非SPJ优化 一.子查询优化 1. ...

  8. mysql优化———第二篇:数据库优化调整参数

    摘要 参数调优内容: 1. 内存利用方面 2. 日志控制方面 3.文件IO分配,空间占用方面 4. 其它相关参数 一  摘要 通过参数提高MYSQL的性能.核心思想如下:         1 提高my ...

  9. 我必须得告诉大家的MySQL优化原理

    本文转载自http://www.jianshu.com/p/d7665192aaaf 说起MySQL的查询优化,相信大家积累一堆技巧:不能使用SELECT *.不使用NULL字段.合理创建索引.为字段 ...

随机推荐

  1. spring boot基础

    1.ANT下面典型的项目层次结构.(1) src存放文件.(2) class存放编译后的文件.(3) lib存放第三方JAR包.(4) dist存放打包,发布以后的代码. 2.Source Folde ...

  2. AIX查看某个端口被哪个进程占用

    AIX查看某个端口被哪个进程占用 学习了:https://zhidao.baidu.com/question/1928716757722021467.html 1. netstat -Aan|grep ...

  3. JDBC-Statement 对象

    Statement 对象 一旦我们获得了数据库的连接,我们就可以和数据库进行交互.JDBC 的 Statement,CallableStatement 和 PreparedStatement 接口定义 ...

  4. crm操作报价单实体

    using System;     using Microsoft.Xrm.Sdk;     using Microsoft.Crm.Sdk.Messages;     using Microsoft ...

  5. 小贝_mysql三种子查询

    mysql三种子查询 简要: 一.三种子查询 二.三种子查询理解模型 一.mysql 三种子查询 where子查询.from子查询.exists子查询 二.理解模型: 2.1.一个好的模型,便于我们去 ...

  6. Android动态载入JAR包的实现方法

    有时候我们须要使用动态更新技术,简单来说就是:当我们把开发jar包发送给用户后.假设后期升级了部分代码.这时让用户的jar包自己主动更新,而不是用户主动手动地去更新的技术就是动态更新.这个须要使用的技 ...

  7. cocos2d-x-lua基础系列教程一(hello lua)

    myscene.lua function ERROR_TRACBACK(msg) print (==========) print ("lua error is "..tostri ...

  8. [poj3974] Palindrome 解题报告 (hash\manacher)

    题目链接:http://poj.org/problem?id=3974 题目: 多组询问,每组给出一个字符串,求该字符串最长回文串的长度 数据范围支持$O(nlog n)$ 解法一: 二分+hash ...

  9. 机器学习(十一) 支持向量机 SVM(上)

    一.什么是支撑向量机SVM (Support Vector Machine) SVM(Support Vector Machine)指的是支持向量机,是常见的一种判别方法.在机器学习领域,是一个有监督 ...

  10. 用SqlDataReader返回多个结果集

    using System; using System.Data; using System.Data.SqlClient; namespace Northwind { class Program { ...