DIY Cube

Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)

Total Submission(s): 584    Accepted Submission(s): 284

Problem Description
Mr. D is interesting in combinatorial enumeration. Now he want to find out the number of ways on painting the vertexes of a cube. Suppose there are C different colors and two paintings are considered the same if they can transform from one to another by rotation.
 
Input
There are multiple test cases in the input, the first line of input contains an integer denoting the number of test cases.

For each test case, there are only one integer C, denoting the number of colors. (1 <= C <= 1000000000)
 
Output
For each test case, output the the number of painting ways. And if the number is equal or larger than 1015, output the last 15 digits.
 
Sample Input
3
1
2
112
 
Sample Output
Case 1: 1
Case 2: 23 Case 3: 031651434916928 /*
 * 题意:用n中颜色涂一个正方体的八个顶点,求有多少种方法。 假设得到的结果大于等于10^15,则输出后15位就可以。
思路:Ploya定理啊,是组合数学课本上的原题。相应于四种不同类型的旋转,1:不动,即恒等旋转有1个;2:绕三对对立面的中心旋转,有旋转90度,旋转180度,旋转270度,分别有3个;3:绕对边终点连线旋转,有6个。4:绕对角点旋转,有旋转120度和旋转240度,分别有4个。因此共同拥有24个对称。最后能够转化成公式(k^8 + 17*k^4 + 6 * k^2)/ 24 。
因为涉及到了大数,所以这道题我使用java写的,刚学java。 看着大神的分析,写了写试试。java单词好多。
 */
import java.util.*;
import java.math.*;
import java.math.BigInteger;
public class Main {
public static void main(String[] args){
int i,j;
BigInteger sum,k,temp;
temp= new BigInteger ("1000000000000000");
Scanner in=new Scanner(System.in);
int t=in.nextInt();
for(i=1;i<=t;i++){
sum= BigInteger.ZERO;
k=in.nextBigInteger();
sum=sum.add(k.pow(8));
sum=sum.add(k.pow(4).multiply(BigInteger.valueOf(17)));
sum=sum.add(k.pow(2).multiply(BigInteger.valueOf(6)));
sum=sum.divide(BigInteger.valueOf(24));
System.out.print("Case "+i+": ");
if(sum.compareTo(temp) > 0){
sum= sum.mod(temp);
for(j=sum.toString().length(); j<15;j++){
System.out.print(0);
}
}
System.out.println(sum);
}
}
}

hdu 3547 DIY Cube (Ploya定理)的更多相关文章

  1. HDOJ 3547 DIY Cube 解题报告

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3547 题目大意:求用$C$种颜色给立方体的8个顶点染色的本质不同的方法.两种方法本质不同即不能通过旋转 ...

  2. hdu 3547 (polya定理 + 小高精)

    DIY CubeTime Limit: 2000/2000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  3. poj1286Necklace of Beads(ploya定理)

    链接 这个东东是新知识 let's 从头学起吧 这篇文库讲的不错 至少把各种概念学了一遍 然后再看此题 共有两种类型的置换 一种是旋转之后相同算一种 一种是翻转之后相同算一种 对于旋转 共有N次置换 ...

  4. Ploya定理学习笔记

    由于自己的作息极其不规律导致比赛被打爆了 但是有的时候状态其实还行. 关于Ploya定理其实特别有意思 这里粘一个[dalao的blog](https://blog.csdn.net/lyc16355 ...

  5. hdu 4651 Partition (利用五边形定理求解切割数)

    下面内容摘自维基百科: 五边形数定理[编辑] 五边形数定理是一个由欧拉发现的数学定理,描写叙述欧拉函数展开式的特性[1] [2].欧拉函数的展开式例如以下: 亦即 欧拉函数展开后,有些次方项被消去,仅 ...

  6. HDU 5292 Pocket Cube 结论题

    Pocket Cube 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5292 Description Pocket Cube is the 2×2× ...

  7. hdu 4704(费马小定理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4704 思路:一道整数划分题目,不难推出公式:2^(n-1),根据费马小定理:(2,MOD)互质,则2^ ...

  8. hdu 3037 Saving Beans Lucas定理

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  9. hdu 4651 - Partition(五边形数定理)

    定理详见维基百科....http://zh.wikipedia.org/wiki/%E4%BA%94%E9%82%8A%E5%BD%A2%E6%95%B8%E5%AE%9A%E7%90%86 代码如下 ...

随机推荐

  1. NOIp模拟赛三十

    心态崩了的一天 先Orz yrx 开场五分钟yrx大吼一声:“这B题不是原题吗” hjw:“对哦好像我也做过哦” 过了十分钟yrx又大吼一声:“这C题我也做过啊,洪水那题啊” 于是 像我这种傻逼A题一 ...

  2. codeforces 914 D Bash and a Tough Math Puzzle

    #include<iostream> #include<cstring> #include<cstdio> #include<algorithm> #i ...

  3. Linux CentOs6.5误卸载自带python和yum后的解决办法

    事故背景:前几天因项目需要,在服务器上搭建python-mysql模块,结果没安装好,于是乎想卸载重装,遂在网上查询卸载python的方法,结果一不小心直接把系统的python删了个干净....... ...

  4. Docker学习总结(12)——非常详细的 Docker 学习笔记

    一.Docker 简介 Docker 两个主要部件: Docker: 开源的容器虚拟化平台 Docker Hub: 用于分享.管理 Docker 容器的 Docker SaaS 平台 -- Docke ...

  5. Java基础学习总结(44)——10个Java 8 Lambda表达式经典示例

    Java 8 刚于几周前发布,日期是2014年3月18日,这次开创性的发布在Java社区引发了不少讨论,并让大家感到激动.特性之一便是随同发布的lambda表达式,它将允许我们将行为传到函数里.在Ja ...

  6. wget 升级

    漏洞描述: Wget是GNU计划开发的一套用于在网络上进行下载的自由软件,是Unix/Linux系统最常用的下载工具,支持通过HTTP.HTTPS以及FTP这三个最常见的TCP/IP协议下载. Wge ...

  7. spring注解中@component是什么意思

    @Component("userManager") public class UserManagerImpl implements UserManager { private Us ...

  8. 从fork面试题開始的思考

    一.文章来由 还是按照惯例来说一下文章为什么来的.晚上好基友在网上刷面试题,看到一个有趣的题目,于是開始了研究,就有了这篇文章. 二.进入正题 题目例如以下: #include <stdio.h ...

  9. Hello World FastCGI

    什么是FastCGI,google吧,測试一个用C++实现的FastCGI程序. 1, Nginx 安装.http://nginx.org/en/download.html.下载解压.configur ...

  10. js 使用(不断更新...)

    1.JS 对象(Object)和字符串(String)互转 var jsObj = {}; jsObj.testArray = [1, 2, 3, 4, 5]; jsObj.name = 'CSS3' ...