背景

NOIP2014提高组第二题

描述

无向连通图G有n个点,n-1条边。点从1到n依次编号,编号为i的点的权值为Wi ,每条边的长度均为1。图上两点(u, v)的距离定义为u点到v点的最短距离。对于图G上的点对(u, v),若它们的距离为2,则它们之间会产生Wu×Wv的联合权值。

请问图G上所有可产生联合权值的有序点对中,联合权值最大的是多少?所有联合权值之和是多少?

输入格式

输入文件名为link.in。

第一行包含1个整数n。

接下来n-1行,每行包含2个用空格隔开的正整数u、v,表示编号为u和编号为v的点之间有边相连。

最后1行,包含n个正整数,每两个正整数之间用一个空格隔开,其中第i个整数表示图G上编号为i的点的权值为Wi。

输入样例:

5

1 2

2 3

3 4

4 5

1 5 2 3 10

输出格式

输出文件名为link.out。

输出共1行,包含2个整数,之间用一个空格隔开,依次为图G上联合权值的最大值和所有联合权值之和。由于所有联合权值之和可能很大,输出它时要对10007取余。

输出样例:

20 74

备注

对于30%的数据,1< n≤100;

对于60%的数据,1< n≤2000;

对于100%的数据,1< n≤200,000,0< Wi ≤10,000。

思路:

每个点找出最大权值和次大权值(如果有的话)相乘取max就是第一问的解。

对于每个点求一下周围点的权值和,ans=∑(sum[x]-w[v[i]])*w[v[i]]+ans; 取模的时候要注意负数的问题。

(其实开成long long什么事都没有了)

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define N 400500
int xx,yy,n,v[N],next[N],first[N],w[N],tot=0,ans=0,ans1,ans2,maxx=0,sum[N];
void add(int x,int y){v[tot]=y;next[tot]=first[x];first[x]=tot++;}
void dfs(int x){
for(int i=first[x];~i;i=next[i]){
if(w[v[i]]>ans2){
if(w[v[i]]>ans1)
ans2=ans1,ans1=w[v[i]];
else ans2=w[v[i]];
}
sum[x]=(w[v[i]]+sum[x])%10007;
}
}
int main()
{
memset(first,-1,sizeof(first));
scanf("%d",&n);
for(int i=1;i<n;i++){
scanf("%d%d",&xx,&yy);
add(xx,yy);add(yy,xx);
}
for(int i=1;i<=n;i++)scanf("%d",&w[i]);
for(int i=1;i<=n;i++){
ans1=ans2=-50000;
dfs(i);
maxx=max(maxx,ans1*ans2);
}
for(int ii=1;ii<=n;ii++)
for(int i=first[ii];~i;i=next[i])
ans=((((sum[ii]-w[v[i]]+10007)%10007)*w[v[i]])%10007+ans)%10007;
printf("%d %d",maxx,ans);
}

NOIP 2014 T2 联合权值 DFS的更多相关文章

  1. NOIp 2014 #2 联合权值 Label:图论 !!!未AC

    题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...

  2. Noip2014 提高组 T2 联合权值 连通图+技巧

    联合权值 描述 无向连通图 G 有 n 个点,n-1 条边.点从 1 到 n 依次编号,编号为 i 的点的权值为 WiWi, 每条边的长度均为 1.图上两点(u, v)的距离定义为 u 点到 v 点的 ...

  3. luogu1351 [NOIp2014]联合权值 (dfs)

    有两种情况:一个点到它的父亲的父亲(要算两次).一个点的子节点之间互相到达 #include<bits/stdc++.h> #define pa pair<int,int> # ...

  4. 【前缀和】【前缀MAX】洛谷 P1351 NOIP2014提高组 day1 T2 联合权值

    不难发现,树中与某个点距离为2的点只可能是它的父亲的父亲.儿子的儿子 或者 兄弟,分类讨论一下即可. 只有对于兄弟我们不能暴力搞,维护一下每个节点的所有儿子的前缀和.前缀MAX就行了. #includ ...

  5. Luogu 1351 NOIP 2014 联合权值(贪心,计数原理)

    Luogu 1351 NOIP 2014 联合权值(贪心,计数原理) Description 无向连通图 G 有 n 个点,n-1 条边.点从 1 到 n 依次编号,编号为 i 的点的权值为 Wi, ...

  6. NOIP 提高组 2014 联合权值(图论???)

    传送门 https://www.cnblogs.com/violet-acmer/p/9937201.html 题解: 相关变量解释: int n; int fa[maxn];//fa[i] : i的 ...

  7. 题解【luoguP1351 NOIp提高组2014 联合权值】

    题目链接 题意:给定一个无根树,每个点有一个权值.若两个点 \(i,j\) 之间距离为\(2\),则有联合权值 \(w_i \times w_j\).求所有的联合权值的和与最大值 分析: 暴力求,每个 ...

  8. [NOIp 2014]联合权值

    Description 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v ...

  9. NOIP 2004 联合权值

    洛谷 P1351 联合权值 洛谷传送门 JDOJ 2886: [NOIP2014]联合权值 D1 T2 JDOJ传送门 Description 无向连通图 G有 n个点,n-1条边.点从 1到 n依次 ...

随机推荐

  1. Assembly之Instruction之Byte and Word

    Byte and word issues The MSP430 is byte-addressed, and little-endian. Word operands must be located ...

  2. 使用OpenCV画折线图

    使用OpenCV画直方图是一件轻松的事情,画折线图就没有那么Easy了,还是使用一个库吧: GraphUtils 源代码添加入工程 原文链接:http://www.360doc.com/content ...

  3. C#如何判断操作系统语言版本

    using System.Runtime.InteropServices; static void Main(string[] args) { System.Console.WriteLine(Sys ...

  4. jQuery+pjax简单示例汇总

    pjax 是一个jQuery插件,它使用 ajax 和 pushState 来实现快速的浏览体验,包括真正的固定链接,页面标题和工作返回按钮. ajax缺点是破坏了浏览器的前进后退,因为ajax的请求 ...

  5. pycharm主题 变量颜色 自定义

    File--Settings--Edtior--Color Schame-- Lanuage Defaults

  6. 【剑指Offer】13、调整数组顺序使奇数位于偶数前面

      题目描述:   输入一个整数数组,实现一个函数来调整该数组中数字的顺序,使得所有的奇数位于数组的前半部分,所有的偶数位于数组的后半部分,并保证奇数和奇数,偶数和偶数之间的相对位置不变.   解题思 ...

  7. Noip 2015 练习

    子串 传送门 Solution \(f[i][j][k]\)表示A到i,B到j第k个子串的答案 \(g[i][j][k]\)表示A到i,B到j第k个子串且A[i]一定使用 \(g[i][j][k]=( ...

  8. 关于虚拟机中克隆的linux为什么不能开启网络服务

    将centos克隆了一份,启动后并配置好文件,发现网络服务中只有lo(loopback),而网卡(eth0)没有启动,一开始以为是通信模式(bridged,NAT,host-only)的选择问题,最后 ...

  9. Educational Codeforces Round 35 B/C/D

    B. Two Cakes 传送门:http://codeforces.com/contest/911/problem/B 本题是一个数学问题. 有a个Ⅰ类球,b个Ⅱ类球:有n个盒子.将球放入盒子中,要 ...

  10. Oracle笔记 多表查询

    Oracle笔记  多表查询   本次预计讲解的知识点 1. 多表查询的操作.限制.笛卡尔积的问题: 2. 统计函数及分组统计的操作: 3. 子查询的操作,并且结合限定查询.数据排序.多表查询.统计查 ...