简介

  TopN算法是一个经典的算法,由于每个map都只是实现了本地的TopN算法,而假设map有M个,在归约的阶段只有M x N个,这个结果是可以接受的并不会造成性能瓶颈。

  这个TopN算法在map阶段将使用TreeMap来实现排序,以到达可伸缩的目的。

  当然算法有两种,一种是唯一键,就是说key的类型是唯一的(是指在比较的实际阶段),比如本篇就是唯一键的TopN实现;

  另一种就是非唯一键,比如key值可能会有A、B、C三种,然后分别对他们求TopN,当然,我们假设数据是混在一起的,非唯一键方面的内容,将会写到另一篇博客上。

  进入正题

一、输入、期望输出、思路。

由于是唯一键实际上与排序有关的只是value部分,我们大可以简单点,输入数据为一列数字好了。

TopN.txt内容如下:

20 78 56 45 23 15 12 35 79 68 98 63 111 222 333 444 555

但我们设置N=10时,期望输出为:

555
444
333
222
111
98
79
78
68
63

思路嘛,在简介部分已经说的很清楚了,没必要再赘述了,直接上代码:

2.用Java编写MapReduce程序实现TopN:

为了能够真正意义上的称为TopN,这里在context里设置了N的值。所以在输入参数的时候也许相应的增加!

package TopN;

import java.io.IOException;
import java.util.StringTokenizer;
import java.util.TreeMap; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class TopN {
public static class TopTenMapper extends
Mapper<Object, Text, NullWritable, IntWritable> {
private TreeMap<Integer, String> repToRecordMap = new TreeMap<Integer, String>(); public void map(Object key, Text value, Context context) {
int N = ; //默认为Top10
N = Integer.parseInt(context.getConfiguration().get("N"));
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
repToRecordMap.put(Integer.parseInt(itr.nextToken()), " ");
if (repToRecordMap.size() > N) {
repToRecordMap.remove(repToRecordMap.firstKey());
}
}
} protected void cleanup(Context context) {
for (Integer i : repToRecordMap.keySet()) {
try {
context.write(NullWritable.get(), new IntWritable(i));
} catch (Exception e) {
e.printStackTrace();
}
}
}
} public static class TopTenReducer extends
Reducer<NullWritable, IntWritable, NullWritable, IntWritable> {
private TreeMap<Integer, String> repToRecordMap = new TreeMap<Integer, String>(); public void reduce(NullWritable key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException {
int N = ; //默认为Top10
N = Integer.parseInt(context.getConfiguration().get("N"));
for (IntWritable value : values) {
repToRecordMap.put(value.get(), " ");
if (repToRecordMap.size() > N) {
repToRecordMap.remove(repToRecordMap.firstKey());
}
}
for (Integer i : repToRecordMap.descendingMap().keySet()) {
context.write(NullWritable.get(), new IntWritable(i));
}
} } public static void main(String[] args) throws Exception {
if (args.length != ) {
throw new IllegalArgumentException(
"!!!!!!!!!!!!!! Usage!!!!!!!!!!!!!!: hadoop jar <jar-name> "
+ "TopN.TopN "
+ "<the value of N>"
+ "<input-path> "
+ "<output-path>");
}
Configuration conf = new Configuration();
conf.set("N", args[]);
Job job = Job.getInstance(conf, "TopN");
job.setJobName("TopN");
Path inputPath = new Path(args[]);
Path outputPath = new Path(args[]);
FileInputFormat.setInputPaths(job, inputPath);
FileOutputFormat.setOutputPath(job, outputPath);
job.setJarByClass(TopN.class);
job.setMapperClass(TopTenMapper.class);
job.setReducerClass(TopTenReducer.class);
job.setNumReduceTasks(); job.setMapOutputKeyClass(NullWritable.class);// map阶段的输出的key
job.setMapOutputValueClass(IntWritable.class);// map阶段的输出的value job.setOutputKeyClass(NullWritable.class);// reduce阶段的输出的key
job.setOutputValueClass(IntWritable.class);// reduce阶段的输出的value System.exit(job.waitForCompletion(true) ? : );
} }

3.用Scala写Spark程序实现TopN:

依然简洁的代码:

package spark
import org.apache.spark.{ SparkContext, SparkConf }
import org.apache.spark.rdd.RDD.rddToOrderedRDDFunctions
import org.apache.spark.rdd.RDD.rddToPairRDDFunctions
object TopN {
def main(args: Array[String]) {
var N = //这里指定N的值
val conf = new SparkConf().setAppName(" TopN ")
.setMaster("local")
var sc = new SparkContext(conf)
sc.setLogLevel("Warn")
val file = sc.textFile("e:\\TopN.txt")
val rdd = file.flatMap(_.split(" ")).map(x => (x.toInt, null))
.sortByKey(false).map(_._1).take(N)
.foreach { println }
}
}

TopN问题(分别使用Hadoop和Spark实现)的更多相关文章

  1. Ubuntu14.04或16.04下Hadoop及Spark的开发配置

    对于Hadoop和Spark的开发,最常用的还是Eclipse以及Intellij IDEA. 其中,Eclipse是免费开源的,基于Eclipse集成更多框架配置的还有MyEclipse.Intel ...

  2. hadoop之Spark强有力竞争者Flink,Spark与Flink:对比与分析

    hadoop之Spark强有力竞争者Flink,Spark与Flink:对比与分析 Spark是一种快速.通用的计算集群系统,Spark提出的最主要抽象概念是弹性分布式数据集(RDD),它是一个元素集 ...

  3. Hadoop与Spark比较

    先看这篇文章:http://www.huochai.mobi/p/d/3967708/?share_tid=86bc0ba46c64&fmid=0 直接比较Hadoop和Spark有难度,因为 ...

  4. 2分钟读懂Hadoop和Spark的异同

    谈到大数据框架,现在最火的就是Hadoop和Spark,但我们往往对它们的理解只是提留在字面上,并没有对它们进行深入的思考,倒底现在业界都在使用哪种技术?二者间究竟有哪些异同?它们各自解决了哪些问题? ...

  5. 在MacOs上配置Hadoop和Spark环境

    在MacOs上配置hadoop和spark环境 Setting up Hadoop with Spark on MacOs Instructions 准备环境 如果没有brew,先google怎样安装 ...

  6. 成都大数据Hadoop与Spark技术培训班

    成都大数据Hadoop与Spark技术培训班   中国信息化培训中心特推出了大数据技术架构及应用实战课程培训班,通过专业的大数据Hadoop与Spark技术架构体系与业界真实案例来全面提升大数据工程师 ...

  7. bigdata之hadoop and spark

    目前正在学习Hadoop和spark之类的东西,一个月把Hadoop的基础东西过了一遍,但是感觉好动都没跟上老师的课程,哪位前辈了解这方面的东西希望给指点迷津.接下来我们还要学习spark和nosql ...

  8. PageRank在Hadoop和spark下的实现以及对比

    关于PageRank的地位,不必多说. 主要思想:对于每个网页,用户都有可能点击网页上的某个链接,例如 A:B,C,D B:A,D C:AD:B,C 由这个我们可以得到网页的转移矩阵      A   ...

  9. 安装Hadoop及Spark(Ubuntu 16.04)

    安装Hadoop及Spark(Ubuntu 16.04) 安装JDK 下载jdk(以jdk-8u91-linux-x64.tar.gz为例) 新建文件夹 sudo mkdir /usr/lib/jvm ...

  10. 老李分享:大数据框架Hadoop和Spark的异同 1

    老李分享:大数据框架Hadoop和Spark的异同   poptest是国内唯一一家培养测试开发工程师的培训机构,以学员能胜任自动化测试,性能测试,测试工具开发等工作为目标.如果对课程感兴趣,请大家咨 ...

随机推荐

  1. 【sqli-labs】 less18 POST - Header Injection - Uagent field - Error based (基于错误的用户代理,头部POST注入)

    这次username和password都进行了输入校验 但是ip和uagent没有校验 当我们用admin admin登陆成功后,就会一条插入语句 由于程序无条件的信任了浏览器的header信息,那么 ...

  2. HDU_5810_数学,概率,方差

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5810 大意:将n个球往m个盒子中投,每个球被投入每个盒子的概率相等,求方差. 看题解说,这是二项分布( ...

  3. [51Nod 1218] 最长递增子序列 V2 (LIS)

    传送门 Description 数组A包含N个整数.设S为A的子序列且S中的元素是递增的,则S为A的递增子序列.如果S的长度是所有递增子序列中最长的,则称S为A的最长递增子序列(LIS).A的LIS可 ...

  4. Linux思维导图之rpm、yum、编译

    yum安装失败: 1.yum client 路径指向不正确:2.yum server 缓存未清理(yum clean all;yum makecache):3.网络不连通

  5. Navicat Premium 下载地址

    Navicat Premium(32 bit)简体中文版:http://xiazai.formysql.com/trial/navicat_premium_trial.exe Navicat Prem ...

  6. logstash-input-jdbc实现mysql 与elasticsearch实时同步(ES与关系型数据库同步)

    引言: elasticsearch 的出现使得我们的存储.检索数据更快捷.方便.但很多情况下,我们的需求是:现在的数据存储在mysql.oracle等关系型传统数据库中,如何尽量不改变原有数据库表结构 ...

  7. 1013MySQL监控利器-Innotop

    转自 http://www.cnblogs.com/ivictor/p/5101506.html 安装过程中 可以使用 YUM INSTALL INNOTOP进行直接安装 Innotop是一款十分强大 ...

  8. http400错误基本都是http请求参数与服务器接收参数不匹配

    http400错误基本都是http请求参数与服务器接收参数不匹配造成的, 如:1)post请求,你发了个get请求 2)content-type指定不匹配致使参数无法读出来

  9. POJ 2373

    原本一道挺简单的DP题,思路有了,运用单调队列,但在写单调队列时写挫了... 这道题只需要计算偶数位置的即可,这是显而易见的,我有注意过这情况,写的时候却没在意...--! 加入队列的元素应该当前no ...

  10. KeyEvent 键码值

    A 至 Z 键与 A – Z 字母的 ASCII 码同样: 值 描写叙述 65 A 键 66 B 键 67 C 键 68 D 键 69 E 键 70 F 键 71 G 键 72 H 键 73 I 键 ...