CNN(卷积神经网络)、RNN(循环神经网络)和DNN(深度神经网络)
本文转载修改自:知乎-科言君
感知机(perceptron)
神经网络技术起源于上世纪五、六十年代,当时叫感知机(perceptron)
,拥有输入层、输出层和一个隐含层。输入的特征向量通过隐含层变换达到输出层,在输出层得到分类结果。早期感知机的推动者是Rosenblatt。但是,Rosenblatt的单层感知机有一个严重得不能再严重的问题,即它对稍复杂一些的函数都无能为力(比如最为典型的“异或”操作)。
随着数学的发展,这个缺点直到上世纪八十年代才被Rumelhart、Williams、Hinton、LeCun等人发明的多层感知机(multilayer perceptron)
克服。多层感知机,顾名思义,就是有多个隐含层的感知机。我们看一下多层感知机的结构:
图1 上下层神经元全部相连的神经网络——多层感知机
多层感知机可以摆脱早期离散传输函数的束缚,使用sigmoid或tanh等连续函数模拟神经元对激励的响应,在训练算法上则使用Werbos发明的反向传播BP算法,这就是所说的神经网络NN
。多层感知机解决了之前无法模拟异或逻辑的缺陷,同时更多的层数也让网络更能够刻画现实世界中的复杂情形。多层感知机给我们带来的启示是,神经网络的层数直接决定了它对现实的刻画能力——利用每层更少的神经元拟合更加复杂的函数。
神经网络(Neural Network)
即便大牛们早就预料到神经网络需要变得更深,但是有一个梦魇总是萦绕左右。随着神经网络层数的加深,优化函数越来越容易陷入局部最优解,并且这个“陷阱”越来越偏离真正的全局最优。利用有限数据训练的深层网络,性能还不如较浅层网络。同时,另一个不可忽略的问题是随着网络层数增加,“梯度消失”现象更加严重。具体来说,我们常常使用sigmoid作为神经元的输入输出函数。对于幅度为1的信号,在BP反向传播梯度时,每传递一层,梯度衰减为原来的0.25。层数一多,梯度指数衰减后低层基本上接受不到有效的训练信号。
2006年,Hinton利用预训练方法缓解了局部最优解问题,将隐含层推动到了7层,神经网络真正意义上有了“深度”,由此揭开了深度学习的热潮。这里的“深度”并没有固定的定义——在语音识别中4层网络就能够被认为是“较深的”,而在图像识别中20层以上的网络屡见不鲜。为了克服梯度消失,ReLU、maxout等传输函数代替了sigmoid,形成了如今DNN的基本形式。单从结构上来说,全连接的DNN和图1的多层感知机是没有任何区别的。
值得一提的是,今年出现的高速公路网络(highway network)和深度残差学习(deep residual learning)进一步避免了梯度消失,网络层数达到了前所未有的一百多层(深度残差学习:152层)
图2 缩减版的深度残差学习网络,仅有34层,终极版有152层
如图1所示,我们看到全连接DNN的结构里下层神经元和所有上层神经元都能够形成连接,带来的潜在问题是参数数量的膨胀。假设输入的是一幅像素为1K×1K的图像,隐含层有1M个节点,光这一层就有10^12个权重需要训练,这不仅容易过拟合,而且极容易陷入局部最优。另外,图像中有固有的局部模式(比如轮廓、边界,人的眼睛、鼻子、嘴等)可以利用,显然应该将图像处理中的概念和神经网络技术相结合。此时我们可以引出的卷积神经网络CNN。对于CNN来说,并不是所有上下层神经元都能直接相连,而是通过“卷积核”作为中介。同一个卷积核在所有图像内是共享的,图像通过卷积操作后仍然保留原先的位置关系。两层之间的卷积传输的示意图如下:
图3 卷积神经网络隐含层(摘自Theano教程)
通过一个例子简单说明卷积神经网络的结构。假设图3中m-1=1是输入层,我们需要识别一幅彩色图像,这幅图像具有四个通道ARGB(透明度和红绿蓝,对应了四幅相同大小的图像),假设卷积核大小为100×100,共使用100个卷积核w1到w100(从直觉来看,每个卷积核应该学习到不同的结构特征)。用w1在ARGB图像上进行卷积操作,可以得到隐含层的第一幅图像;这幅隐含层图像左上角第一个像素是四幅输入图像左上角100×100区域内像素的加权求和,以此类推。同理,算上其他卷积核,隐含层对应100幅“图像”。每幅图像对是对原始图像中不同特征的响应。按照这样的结构继续传递下去。CNN中还有max-pooling等操作进一步提高鲁棒性。
图4 一个典型的卷积神经网络结构,注意到最后一层实际上是一个全连接层(摘自Theano教程)
在这个例子里,我们注意到输入层到隐含层的参数瞬间降低到了100100100=10^6个!这使得我们能够用已有的训练数据得到良好的模型。CNN之所以适用于图像识别,正是由于CNN模型限制参数了个数并挖掘了局部结构的这个特点。顺着同样的思路,利用语音语谱结构中的局部信息,CNN照样能应用在语音识别中。
全连接的DNN还存在着另一个问题——无法对时间序列上的变化进行建模。然而,样本出现的时间顺序对于自然语言处理、语音识别、手写体识别等应用非常重要。对了适应这种需求,就出现了另一种神经网络结构——循环神经网络RNN。
在普通的全连接网络或CNN中,每层神经元的信号只能向上一层传播,样本的处理在各个时刻独立,因此又被成为前向神经网络(Feed-forward Neural Networks)。而在RNN中,神经元的输出可以在下一个时间戳直接作用到自身,即第i层神经元在m时刻的输入,除了(i-1)层神经元在该时刻的输出外,还包括其自身在(m-1)时刻的输出!表示成图就是这样的:
图5 RNN网络结构
我们可以看到在隐含层节点之间增加了互连。为了分析方便,我们常将RNN在时间上进行展开,得到如图6所示的结构:
图6 RNN在时间上进行展开
(t+1)时刻网络的最终结果O(t+1)是该时刻输入和所有历史共同作用的结果,这就达到了对时间序列建模的目的。
可以发现,RNN可以看成一个在时间上传递的神经网络,它的深度是时间的长度!正如我们上面所说,“梯度消失”现象又要出现了,只不过这次发生在时间轴上。对于t时刻来说,它产生的梯度在时间轴上向历史传播几层之后就消失了,根本就无法影响太遥远的过去。因此,之前说“所有历史”共同作用只是理想的情况,在实际中,这种影响也就只能维持若干个时间戳。
为了解决时间上的梯度消失,机器学习领域发展出了长短时记忆单元LSTM,通过门的开关实现时间上记忆功能,并防止梯度消失,一个LSTM单元长这个样子:
图7 LSTM
除了以上的三种网络,和之前提到的深度残差学习、LSTM外,深度学习还有许多其他的结构。举个例子,RNN既然能继承历史信息,是不是也能吸收点未来的信息呢?因为在序列信号分析中,如果我能预知未来,对识别一定也是有所帮助的。因此就有了双向RNN、双向LSTM,同时利用历史和未来的信息。
图8 双向RNN
事实上,不论是那种网络,他们在实际应用中常常都混合着使用,比如CNN和RNN在上层输出之前往往会接上全连接层,很难说某个网络到底属于哪个类别。不难想象随着深度学习热度的延续,更灵活的组合方式、更多的网络结构将被发展出来。尽管看起来千变万化,但研究者们的出发点肯定都是为了解决特定的问题。如果想进行这方面的研究,不妨仔细分析一下这些结构各自的特点以及它们达成目标的手段。入门的话可以参考:
Ng的Ufldl以及
Theano内自带的教程
另外的一些比较好的文章:THE NEURAL NETWORK ZOO
NEURAL NETWORK ZOO PREQUEL: CELLS AND LAYERS
翻译版本:多图万字文 | 从神经元到CNN、RNN、GAN…神经网络看本文绝对够了
CNN笔记:通俗理解卷积神经网络
数据挖掘中所需的概率论与数理统计知识
神经网络与深度学习
Fully Convolutional Networks
xgboost 特征评分的计算原理
Ngram语言模型
CNN(卷积神经网络)、RNN(循环神经网络)和DNN(深度神经网络)的更多相关文章
- CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别?
https://www.zhihu.com/question/34681168 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?修改 CNN(卷积神经网 ...
- 神经网络 之 DNN(深度神经网络) 介绍
CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络) CNN 专门解决图像问题的,可用把它看作特征提取层,放在输入层上,最后用MLP 做分类. RNN 专门解决时间序列问题的,用来提 ...
- 神经网络6_CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)概念区分理解
sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程,QQ:231469242) https://study.163.com/course/introduction.htm?courseId ...
- Keras(四)CNN 卷积神经网络 RNN 循环神经网络 原理及实例
CNN 卷积神经网络 卷积 池化 https://www.cnblogs.com/peng8098/p/nlp_16.html 中有介绍 以数据集MNIST构建一个卷积神经网路 from keras. ...
- Recurrent Neural Networks(RNN) 循环神经网络初探
1. 针对机器学习/深度神经网络“记忆能力”的讨论 0x1:数据规律的本质是能代表此类数据的通用模式 - 数据挖掘的本质是在进行模式提取 数据的本质是存储信息的介质,而模式(pattern)是信息的一 ...
- CNN(卷积神经网络)、RNN(循环神经网络)、DNN,LSTM
http://cs231n.github.io/neural-networks-1 https://arxiv.org/pdf/1603.07285.pdf https://adeshpande3.g ...
- RNN循环神经网络
1.为什么还会有RNN? CNN(卷积神经网络)我们会发现, 他们的输出都是只考虑前一个输入的影响而不考虑其它时刻输入的影响, 比如简单的猫,狗,手写数字等单个物体的识别具有较好的效果. 但是, 对于 ...
- 循环神经网络(RNN)模型与前向反向传播算法
在前面我们讲到了DNN,以及DNN的特例CNN的模型和前向反向传播算法,这些算法都是前向反馈的,模型的输出和模型本身没有关联关系.今天我们就讨论另一类输出和模型间有反馈的神经网络:循环神经网络(Rec ...
- 深度学习之循环神经网络RNN概述,双向LSTM实现字符识别
深度学习之循环神经网络RNN概述,双向LSTM实现字符识别 2. RNN概述 Recurrent Neural Network - 循环神经网络,最早出现在20世纪80年代,主要是用于时序数据的预测和 ...
随机推荐
- Linux中特别要注意用户与文件权限的问题
1.在使用Linux中,肯定会涉及不同用户的切换,但是如果不合理切换的话,会造成很多应用启动不了,所以这时候要多多使用ll看一下文件目录的权限问题,因为如果习惯用root启动程序,然后切换普通用户继续 ...
- 使用OTP原则构建一个非阻塞的TCP服务器
http://erlangcentral.org/wiki/index.php/Building_a_Non-blocking_TCP_server_using_OTP_principles CONT ...
- 生成动态Lambda表达式1
SqlDataReader生成动态Lambda表达式 上一扁使用动态lambda表达式来将DataTable转换成实体,比直接用反射快了不少.主要是首行转换的时候动态生成了委托. 后面的转换都是直接调 ...
- [Scikit-Learn] - 数据预处理 - 归一化/标准化/正则化
reference: http://www.cnblogs.com/chaosimple/p/4153167.html 一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/ ...
- WPF的两棵树与绑定
原文:WPF的两棵树与绑定 先建立测试基类 public class VisualPanel : FrameworkElement { protected VisualCollection Chi ...
- DELPHI +ClientDataSet+DBGRIDEH 进行排序
DELPHI +ClientDataSet+DBGRIDEH 进行排序因为使用了DBX+ClientDataSet,所以排序显得简单些,只需要设定几个属性就OK了.1.DbGridEH 中设定:Op ...
- python reversed
reversed()函数是返回序列seq的反向访问的迭代子.参数可以是列表,元组,字符串,不改变原对象. 例题: 牛客最近来了一个新员工Fish,每天早晨总是会拿着一本英文杂志,写些句子在本子上.同事 ...
- USER_AGENT 知识
USER-AGENT 是 Http 协议中的一部分,属于头域的组成部分,User Agent也简称 UA,意为用户代理,当用户通过浏览器发送 http 请求时,USER_AGENT 起到表明自己身份的 ...
- Openstack+Kubernetes+Docker微服务实践
Openstack+Kubernetes+Docker微服务实践 ..... Openstack+Kubernetes+Docker微服务实践之路--选型 posted @ 2016-11-15 ...
- 调用FileSystemObject.CopyFile发生没有权限的错误
作者:朱金灿 来源:http://blog.csdn.net/clever101 最近编写一个JScript,在调用FileSystemObject.CopyFile发生没有权限的错误,具体如下图: ...