在矩阵分解中。 有类问题比較常见,即矩阵的元素仅仅有0和1。 相应实际应用中的场景是:用户对新闻的点击情况,对某些物品的购买情况等。

基于graphchi里面的矩阵分解结果不太理想。调研了下相关的文献,代码主要实现了基于PLSA的分解方法,具体请參考后面的參考文献

#!/usr/local/bin/python
#-*-coding:utf-8-*-

import sys
import math
import numpy as np
import string
import random

"""
reimplement algorithm of aspect_bernoulli.m
which may be usefull in one class matrix factorization
"""

"""
get matrix that all elements are 1
"""
def get_unit_matrix(row, col):
return np.ones((row, col), dtype=int)

def norm_zero(array):
col, row = array.shape
for c in xrange(col):
for r in xrange(row):
if array[c][r] < 0.000001:
array[c][r] = 0.000001
return array

"""
X: binary data matrix, each column is an observation
K: number of aspects(components) to estimate
iter: max number of iterations to do
ufile: save matrix result u
vfile: save martix result v
"""
def run_bernoulli(X, K, iter, ufile, vfile):
X = np.array(X)
T,N = X.shape
S = np.random.rand(K, N)
S_SUM = np.add.reduce(S)
S_SUM_EXT = np.tile(S_SUM, (K, 1))
S = S/S_SUM_EXT
A = np.random.rand(T, K)
UM_A = get_unit_matrix(T, K)
A_TEMP = UM_A - A
UM_X = get_unit_matrix(T, N)
X_TEMP = UM_X - X
l = []
for i in xrange(iter):
#STEP1
AS = np.dot(A, S) #A*S
AS_NORM = norm_zero(AS) #max(eps, A*S)
X_AS_NORM = X/AS_NORM #(X./max(eps, A*S))
FIRST = np.dot(A.T, X_AS_NORM) #A'*(X./max(eps, A*S))
S_1 = S*FIRST #S.*(A'*(X./max(eps, A*S)))

AS_TEMP = UM_X - AS #1-A*S
AS_TEMP_NORM = norm_zero(AS_TEMP) #max(eps, 1-A*S)
X_AS_TEMP_NORM = X_TEMP/AS_TEMP_NORM #(1-x)./max(eps, 1-A*S)
SECOND = np.dot(A_TEMP.T, X_AS_TEMP_NORM) #(1-A)'*((1-x)./max(eps, 1-A*S))
S_2 = S*SECOND #S.*((1-A)'*((1-x)./max(eps, 1-A*S)))
S = S_1 + S_2 #S.*(A'*(X./max(eps, A*S))) + S.*((1-A)'*((1-x)./max(eps, 1-A*S)))

S_SUM = np.add.reduce(S)
S_SUM_EXT = np.tile(S_SUM, (K, 1))
S = S/S_SUM_EXT

#STEP2
AS = np.dot(A, S) #A*S
AS_NORM = norm_zero(AS) #max(eps, A*S)
X_AS_NORM = X/AS_NORM #(X./max(eps, A*S))
A = A* np.dot(X_AS_NORM, S.T)

#STEP3
A_TEMP_S = np.dot(A_TEMP, S) #A1*S
A_TEMP_S_NORM = norm_zero(A_TEMP_S) #max(eps, A1*S)
A_TEMP_S_NORM_X = X_TEMP/A_TEMP_S_NORM #(1-X)./max(eps, A1*S)
A_TEMP = A_TEMP * (np.dot(A_TEMP_S_NORM_X, S.T)) #A1.*(((1-x)./max(eps, A1*S))*S')

A = A/(A + A_TEMP) #A./(A+A1)
A_TEMP = UM_A - A #1-A

#STEP4 compute loss function
AS = np.dot(A, S) #A*S
AS_NORM = norm_zero(AS) #max(eps, A*S)
AS_NORM = np.log(AS_NORM) #log(max(eps, A*S))

LOSS_FIRST = X * AS_NORM # X.*log(max(eps, A*S))

AS_TEMP = UM_X - AS #1-A*S
AS_TEMP_NORM = norm_zero(AS_TEMP) #max(eps, 1-A*S)
AS_TEMP_NORM = np.log(AS_TEMP_NORM) #log(max(eps, 1-A*S))
LOSS_SECOND = X_TEMP * AS_TEMP_NORM #(1-X).*log(max(eps, 1-A*S))

LOSS = LOSS_FIRST + LOSS_SECOND #X.*log(max(eps, A*S)) + (1-X).*log(max(eps, 1-A*S))
LOSS_SUM = np.add.reduce(LOSS) #sum(X.*log(max(eps, A*S)) + (1-X).*log(max(eps, 1-A*S)))
loss = np.sum(LOSS_SUM)/(N*T) #sum(sum(X.*log(max(eps, A*S)) + (1-X).*log(max(eps, 1-A*S))))/(N*T)
l.append(loss)
rmse = estimate_rmse(X, AS)
if i > 1:
if math.fabs(l[i] - l[i-1]) < 0.00001:break
print "iter = %d, loss = %f, rmse = %f"%(i, loss, rmse)
np.savetxt(ufile, A)
np.savetxt(vfile, S)

參考文献:

1. The aspect Bernoulli model: multiple causes of presences and absences (文章算法相应文章)

2. One-Class Matrix Completion with Low-Density Factorizations

基于One-Class的矩阵分解方法的更多相关文章

  1. SVD++:推荐系统的基于矩阵分解的协同过滤算法的提高

    1.背景知识 在讲SVD++之前,我还是想先回到基于物品相似的协同过滤算法.这个算法基本思想是找出一个用户有过正反馈的物品的相似的物品来给其作为推荐.其公式为:

  2. 简单的基于矩阵分解的推荐算法-PMF, NMF

    介绍: 推荐系统中最为主流与经典的技术之一是协同过滤技术(Collaborative Filtering),它是基于这样的假设:用户如果在过去对某些项目产生过兴趣,那么将来他很可能依然对其保持热忱.其 ...

  3. 【RS】Sparse Probabilistic Matrix Factorization by Laplace Distribution for Collaborative Filtering - 基于拉普拉斯分布的稀疏概率矩阵分解协同过滤

    [论文标题]Sparse Probabilistic Matrix Factorization by Laplace Distribution for Collaborative Filtering  ...

  4. FAST MONTE CARLO ALGORITHMS FOR MATRICES II (快速的矩阵分解策略)

    目录 问题 算法 LINEARTIMESVD 算法 CONSTANTTIMESVD 算法 理论 算法1的理论 算法2 的理论 代码 Drineas P, Kannan R, Mahoney M W, ...

  5. 推荐算法之用矩阵分解做协调过滤——LFM模型

    隐语义模型(Latent factor model,以下简称LFM),是推荐系统领域上广泛使用的算法.它将矩阵分解应用于推荐算法推到了新的高度,在推荐算法历史上留下了光辉灿烂的一笔.本文将对 LFM ...

  6. 【Math for ML】矩阵分解(Matrix Decompositions) (下)

    [Math for ML]矩阵分解(Matrix Decompositions) (上) I. 奇异值分解(Singular Value Decomposition) 1. 定义 Singular V ...

  7. 推荐系统(recommender systems):预测电影评分--构造推荐系统的一种方法:低秩矩阵分解(low rank matrix factorization)

    如上图中的predicted ratings矩阵可以分解成X与ΘT的乘积,这个叫做低秩矩阵分解. 我们先学习出product的特征参数向量,在实际应用中这些学习出来的参数向量可能比较难以理解,也很难可 ...

  8. ML.NET 示例:推荐之One Class 矩阵分解

    写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...

  9. ML.NET 示例:推荐之矩阵分解

    写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...

随机推荐

  1. LeetCode——Valid Parentheses

    Given a string containing just the characters '(', ')', '{', '}', '[' and ']', determine if the inpu ...

  2. 分析性能瓶颈的视图:v$session_wait

    这是一个寻找性能瓶颈的关键视图.它提供了任何情况下session在数据库中当前正在等待什么(如果session当前什么也没在做,则显示它最后的等待事件).当系统存在性能问题时,本视图可以做为一个起点指 ...

  3. APNs推送

    消息推送是可以指定声音的.譬如你可以对正面的反馈使用欢快的声音,对负面的反馈使用低沉一点的声音,都可以达到别出心裁让人眼前一亮的目的.你需要先放一些aiff.wav或者caf音频文件到app的资源文件 ...

  4. c#设计模式(1)

    本文摘取自吕震宇的博客园文章,版权归吕震宇仅供个人学习参考.转载请标明原作者吕震宇. 这学期开设设计模式课程,将课件放上来. 课本:<C#设计模式>,电子工业出版社,ISBN 7-5053 ...

  5. week3_notebooke1

    今日内容:编码集合深浅cpoy文件操作函数初始函数函数的返回值函数的传参 初识: # == 数值比较 # is 比较的是内存地址 # id 测试的是内存地址 # 小数据池 str int # int: ...

  6. 使用DWR实现JS调用服务端Java代码

    DWR简介 DWR全称Direct Web Remoting,是一款非常优秀的远程过程调用(Remote Procedure Call)框架,通过浏览器提供的Ajax引擎实现在前端页面的JS代码中调用 ...

  7. Android设计模式——Builder(建造者)模式

    1.建造者模式是一步一步创建一个复杂对象的创建模式.该模式是为了将构建复杂对象的过程和他的部件解耦,使得构建过程和部件表示隔离开. 2.Bulider模式的定义是:将一个复杂对象的构建与它的表示分离, ...

  8. CREATE TABLE 语句后的 ON [PRIMARY] 起什么作用

    CREATE   TABLE   [dbo].[table1]   ( [gh]   [char]   (10)   COLLATE   Chinese_PRC_CI_AS   NOT   NULL ...

  9. js正则获取html字符串指定的dom元素和内容

    var str = "<div>111<p id='abc'>3333</p></div><div>222<div id=' ...

  10. AC Codeforces Round #499 (Div. 2) E. Border 扩展欧几里得

    没想出来QAQ....QAQ....QAQ.... 对于一般情况,我们知道 ax+by=gcd(a,b)ax+by=gcd(a,b)ax+by=gcd(a,b) 时方程是一定有解的. 如果改成 ax+ ...