BZOJ 2287 【POJ Challenge】消失之物(DP+容斥)
2287: 【POJ Challenge】消失之物
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 986 Solved: 572
[Submit][Status][Discuss]
Description
ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN。 由于她的疏忽, 第 i 个物品丢失了。 “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” -- 这是经典的问题了。她把答案记为 Count(i, x) ,想要得到所有1 <= i <= N, 1 <= x <= M的 Count(i, x) 表格。
Input
第1行:两个整数 N (1 ≤ N ≤ 2 × 103) 和 M (1 ≤ M ≤ 2 × 103),物品的数量和最大的容积。
第2行: N 个整数 W1, W2, ..., WN, 物品的体积。
Output
一个 N × M 的矩阵, Count(i, x)的末位数字。
Sample Input
1 1 2
Sample Output
11
21
HINT
如果物品3丢失的话,只有一种方法装满容量是2的背包,即选择物品1和物品2。
题解
预处理出01背包的f[i]数组代表装满i空间的方案数。
然后用g[i][j]代表除去i物品后装j空间的方案数。
除去i物品后装j空间的方案数=装满j空间的方案数-一定选i物品后装j空间的方案数
所以方程为 g[i][j]=f[j]-g[i][j-a[i]];
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=;
int n,m,f[N],a[N],g[N][N];
int main(){
scanf("%d%d",&n,&m);
f[]=;
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
for(int j=m;j>=a[i];j--){
f[j]+=f[j-a[i]];
f[j]%=;
}
}
for(int i=;i<=n;i++){
g[i][]=;
for(int j=;j<a[i];j++){
g[i][j]=f[j];
}
for(int j=a[i];j<=m;j++){
g[i][j]=f[j]-g[i][j-a[i]];
g[i][j]=(g[i][j]%+)%;
}
}
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
printf("%d",g[i][j]);
}
printf("\n");
}
return ;
}
BZOJ 2287 【POJ Challenge】消失之物(DP+容斥)的更多相关文章
- BZOJ.2287.[POJ Challenge]消失之物(退背包)
BZOJ 洛谷 退背包.和原DP的递推一样,再减去一次递推就行了. f[i][j] = f[i-1][j-w[i]] + f[i-1][j] f[i-1][j] = f[i][j] - f[i-1][ ...
- [bzoj2287][poj Challenge]消失之物_背包dp_容斥原理
消失之物 bzoj-2287 Poj Challenge 题目大意:给定$n$个物品,第$i$个物品的权值为$W_i$.记$Count(x,i)$为第$i$个物品不允许使用的情况下拿到重量为$x$的方 ...
- 【bzoj2287】[POJ Challenge]消失之物 背包dp
题目描述 ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢? ...
- POJ Challenge消失之物
Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 物品装满容积为 x ...
- bzoj2287:[POJ Challenge]消失之物
思路:首先先背包预处理出f[x]表示所有物品背出体积为x的方案数.然后统计答案,利用dp. C[i][j]表示不用物品i,组成体积j的方案数. 转移公式:C[i][j]=f[j]-C[i][j-w[i ...
- bzoj2287 [POJ Challenge]消失之物
题目链接 少打个else 调半天QAQ 重点在47行,比较妙 #include<algorithm> #include<iostream> #include<cstdli ...
- 【bozj2287】【[POJ Challenge]消失之物】维护多值递推
(上不了p站我要死了) Description ftiasch 有 N 个物品, 体积分别是 W1, W2, -, WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 ...
- bzoj 3622 DP + 容斥
LINK 题意:给出n,k,有a,b两种值,a和b间互相配对,求$a>b$的配对组数-b>a的配对组数恰好等于k的情况有多少种. 思路:粗看会想这是道容斥组合题,但关键在于如何得到每个a[ ...
- 【BZOJ 4665】 4665: 小w的喜糖 (DP+容斥)
4665: 小w的喜糖 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 94 Solved: 53 Description 废话不多说,反正小w要发喜 ...
随机推荐
- [Atcoder Code Festival 2017 Qual A Problem D]Four Coloring
题目大意:给一个\(n\times m\)的棋盘染四种颜色,要求曼哈顿距离为\\(d\\)的两个点颜色不同.解题思路:把棋盘旋转45°,则\((x,y)<-(x+y,x-y)\).这样就变成了以 ...
- CF1037E Trips (离线+图上构造)
题目大意:一共有n个人,每天早上会有两个人成为朋友,朋友关系不具有传递性,晚上,它们会组织旅游,如果一个人去旅游,那么他不少于$k$个朋友也要和他去旅游,求每天的最大旅游人数 一开始并没有想到反向建图 ...
- Linux赛车游戏 SuperTuxKart 1.0 正式发布
SuperTuxKart是一款受Mario Kart(马里奥赛车)启发并以Linux/Tux为主题的开源赛车游戏,经过12年多的开发,已经达到1.0版本.并且确定这个版本确实是一个重要的里程碑. Su ...
- MongoDB入门 常用命令以及增删改查的简单操作
1,运行MongoDB服务mongod --dbpath=/usr/local/developmentTool/mongo/data/db/然后启动客户端mongo2,sudo service mon ...
- 2016 10 28考试 dp 乱搞 树状数组
2016 10 28 考试 时间 7:50 AM to 11:15 AM 下载链接: 试题 考试包 这次考试对自己的表现非常不满意!! T1看出来是dp题目,但是在考试过程中并没有推出转移方程,考虑了 ...
- WinServer-IIS-Dynamic IP Restrictions
动态IP限制 来自为知笔记(Wiz)
- HDU 5187 zhx's contest(防爆__int64 )
Problem Description As one of the most powerful brushes, zhx is required to give his juniors n probl ...
- poj1961--Period(KMP求最小循环节)
Period Time Limit: 3000MS Memory Limit: 30000K Total Submissions: 13511 Accepted: 6368 Descripti ...
- Asp.net button防止点击多次数据提交
<!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head runat= ...
- node13---node使用mongodb
01.js /** *最先的后台语言是Asp(微软的), */ var express = require("express"); //数据库引用 var MongoClient ...