[luogu 2568] GCD (欧拉函数)
题目描述
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对.
输入输出格式
输入格式:
一个整数N
输出格式:
答案
输入样例#1:
4
输出样例#1:
4
说明
对于样例(2,2),(2,4),(3,3),(4,2)
1<=N<=10^7
上午用这道题考试(虽然略有区别不过差不多)qwq
用欧拉函数乱推。。。
code:(ac代码)
#include<cstdio>
#define LL long long
const int N=10000010;
int n,cnt;
int pri[N],phi[N];
LL ans;
LL qphi[N];
bool vis[N];
void init() {
vis[1]=phi[1]=1;
for(int i=2;i<=n;i++) {
if(!vis[i]) pri[++cnt]=i,phi[i]=i-1;
for(int j=1;j<=cnt && pri[j]*i<=n;j++) {
vis[pri[j]*i]=1;
if(!(i%pri[j])) {phi[i*pri[j]]=phi[i]*pri[j];break;}
else phi[i*pri[j]]=phi[i]*phi[pri[j]];
}
}
for(int i=1;i<=n;i++) qphi[i]=qphi[i-1]+phi[i];//前缀和
}
int main() {
scanf("%d",&n);
init();
for(int i=1;i<=cnt;i++)
ans+=(qphi[(n-n%pri[i])/pri[i]]<<1)-1;
//稍微解释:因为每次枚举中有一种情况为(pi,pi) (pi为范围内第i个素数) 应被算作一种其余的都应乘2
//也可以刚开始按乘2算出来最后减去素数个数
printf("%lld",ans);
return 0;
}
code:(考试原代码)
PS:由于考题与本题略有不同不能过本题而且懒得改了,此处仅为记录原考题(即(2,4)与(4,2)视作一种情况)的代码
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<ctime>
#define LL long long
using namespace std;
const int N=10000010;
int n,cnt;
LL ans;
int pri[N/10],phi[N];
LL qphi[N];
bool vis[N];
int gcd(int a,int b) {//原始暴力算法(n^2)
return !b?a:gcd(b,a%b);
}
void init() {//欧拉筛
vis[1]=1;phi[1]=1;
for(register int i=2;i<=n;i++) {
if(!vis[i]) pri[++cnt]=i,phi[i]=i-1;
for(register int j=1;j<=cnt && pri[j]*i<=n;j++) {
vis[pri[j]*i]=1;
if(i%pri[j]==0) {
phi[i*pri[j]]=phi[i]*pri[j];
break;
}
else phi[i*pri[j]]=phi[i]*phi[pri[j]];
}
}
for(int i=1;i<=n;i++) qphi[i]=qphi[i-1]+phi[i];
}
int get(int x) {//高级暴力的二分
if((x<<1)>n) return 0;
int l=1,r=cnt;
while(l<r) {
int mid=(l+r+1)>>1;
if(pri[mid]*x<=n) l=mid;
else r=mid-1;
}
return l;
}
int main() {
// freopen("gcd.in","r",stdin);
// freopen("gcd.out","w",stdout);
scanf("%d",&n);
// int be=clock();
init();
// for(register int i=1;i<=n;i++) {//比较快的暴力算法(nlogn)。。
// int x=get(i);
// ans+=x*phi[i];
// }
// printf("%lld",ans);
// ans=0;cout<<endl;
for(register int i=1;i<=cnt;i++) {//能过的~~暴力~~算法(n)
int x=(n-n%pri[i]);
ans+=qphi[x/pri[i]];
}
// cout<<cnt<<endl;
printf("%lld",ans);
// int ed=clock();
// cout<<endl<<ed-be;
return 0;
}
[luogu 2568] GCD (欧拉函数)的更多相关文章
- BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 4436 Solved: 1957[Submit][Status][Discuss ...
- POJ 2773 Happy 2006【GCD/欧拉函数】
根据欧几里德算法,gcd(a,b)=gcd(a+b*t,b) 如果a和b互质,则a+b*t和b也互质,即与a互质的数对a取模具有周期性. 所以只要求出小于n且与n互质的元素即可. #include&l ...
- HDU 2588 GCD (欧拉函数)
GCD Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u Submit Status De ...
- Bzoj-2818 Gcd 欧拉函数
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x ...
- BZOJ2818: Gcd 欧拉函数求前缀和
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 如果两个数的x,y最大公约数是z,那么x/z,y/z一定是互质的 然后找到所有的素数,然后用欧拉函数求一 ...
- hdu2588 gcd 欧拉函数
GCD Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU 1695 GCD 欧拉函数+容斥定理
输入a b c d k求有多少对x y 使得x在a-b区间 y在c-d区间 gcd(x, y) = k 此外a和c一定是1 由于gcd(x, y) == k 将b和d都除以k 题目转化为1到b/k 和 ...
- HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU 1695 GCD (欧拉函数,容斥原理)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
- hdu 1695 GCD (欧拉函数+容斥原理)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
随机推荐
- [网络流24题] 最长k可重区间集问题 (费用流)
洛谷传送门 LOJ传送门 很巧妙的建图啊...刚了$1h$也没想出来,最后看的题解 发现这道题并不类似于我们平时做的网络流题,它是在序列上的,且很难建出来二分图的形. 那就让它在序列上待着吧= = 对 ...
- Redis 报错:MISCONF Redis is configured to save RDB snapshots
MISCONF Redis is configured to save RDB snapshots, but is currently not able to persist on disk. Com ...
- sql中自连接的使用
一.用SQL自连接查询处理列之间的关系 SQL自身连接,可以解决很多问题.下面举的一个例子,就是使用了SQL自身连接,它解决了列与列之间的逻辑关系问题,准确的讲是列与列之间的层次关系.SQL代码如下: ...
- 如何使用GUID类
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- CF409C Magnum Opus
CF409C Magnum Opus 题意翻译 题目背景 愚人节题目,题面似乎是一位名叫Nicolas Flamel的炼金术士用拉丁文写的某种物质的配方,结合谷歌尝试翻译了一下: 吾友: 哲人石所言不 ...
- POJ--1087--A Plug for UNIX【Dinic】网络最大流
链接:http://poj.org/problem? id=1087 题意:提供n种插座.每种插座仅仅有一个,有m个设备须要使用插座,告诉你设备名称以及使用的插座类型,有k种转换器.能够把某种插座类型 ...
- STM32F030, 使用嘀嗒定时器Systick实现LED闪烁
本文主要解决两个问题 1 STM32的IO口要反转,怎么实现? 2 嘀嗒定时器systick的配置 解答1: 单片机的口,反转非常easy.sbit led = P1 ^6; led = ~led; ...
- 0x15 KMP
这个算法本身就不难. poj1961 #include<cstdio> #include<iostream> #include<cstring> #include& ...
- bzoj1786: [Ahoi2008]Pair 配对&&1831: [AHOI2008]逆序对
一个自以为很对的东西,我们往-1放的数肯定是不增的. 然后就预处理一下,假如i这个位置放j会多多少逆序对. DP一下,我的复杂度应该是O(n*m^2)的,然而你随便搞都能省掉一个m吧,我算了算好像可以 ...
- 【转】小白级的CocoaPods安装和使用教程
原文网址:http://www.jianshu.com/p/e2f65848dddc 百度有很多CocoaPods的安装教程.第一次看的时候,确实有点摸不透的感觉.经过思考,一步一步来实践,前后花了三 ...