Description

一个无向连通图,顶点从1编号到N,边从1编号到M。 
小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数。当小Z 到达N号顶点时游走结束,总分为所有获得的分数之和。 
现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小。

Input

第一行是正整数N和M,分别表示该图的顶点数 和边数,接下来M行每行是整数u,v(1≤u,v≤N),表示顶点u与顶点v之间存在一条边。 输入保证30%的数据满足N≤10,100%的数据满足2≤N≤500且是一个无向简单连通图。

Output

仅包含一个实数,表示最小的期望值,保留3位小数。

Sample Input

3 3
2 3
1 2
1 3

Sample Output

3.333

HINT

边(1,2)编号为1,边(1,3)编号2,边(2,3)编号为3。
/*
设点i的出度为d[i],期望经过的次数为x[i],边i的期望经过的次数为f[i]。
那么可以得到以下式子:
x[i]=Σx[j]/d[j] (j->i)
f[i]=Σx[u]/d[u]+x[v]/d[v]
特别的:x[1]=1+x[j]/d[j] (j->1)
x[n]=1
然后高斯消元解出方程,让经过次数多的边拥有小的编号。
*/
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath>
#define N 510
#define M 250010
#define ld long double
using namespace std;
int u[M],v[M],d[N],n,m;
ld a[N][N],x[N],f[M];
void gauss(){
for(int i=;i<=n;i++){
int id=i;ld maxn=fabs(a[i][i]);
for(int j=i+;j<=n;j++) if(fabs(a[j][i])>maxn) id=j,maxn=fabs(a[j][i]);
if(id!=i) swap(a[id],a[i]);
ld t=1.0/a[i][i];
for(int j=;j<=n+;j++) a[i][j]*=t;
for(int j=;j<=n;j++){
if(j==i) continue;
ld t=a[j][i];
for(int k=i;k<=n+;k++)
a[j][k]-=t*a[i][k];
}
}
for(int i=n;i;i--){
ld tmp=;
for(int j=i+;j<=n;j++)
tmp+=x[j]*a[i][j];
x[i]=a[i][n+]-tmp;
}
}
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++){
scanf("%d%d",&u[i],&v[i]);
d[u[i]]++;d[v[i]]++; }
for(int i=;i<=n;i++) a[i][i]=-;
for(int i=;i<=m;i++){
if(v[i]!=n) a[u[i]][v[i]]+=1.0/d[v[i]];
if(u[i]!=n) a[v[i]][u[i]]+=1.0/d[u[i]];
}
for(int i=;i<n;i++) a[n][i]=;
for(int i=;i<=n;i++){
if(i==||i==n) a[i][n+]=-;
else a[i][n+]=;
}
gauss();
for(int i=;i<=m;i++){
if(u[i]!=n) f[i]+=x[u[i]]/d[u[i]];
if(v[i]!=n) f[i]+=x[v[i]]/d[v[i]];
}
sort(f+,f+m+);
ld ans=;
for(int i=;i<=m;i++)
ans+=f[i]*(m-i+);
printf("%.3lf",(double)ans);
return ;
}

游走(bzoj 3143)的更多相关文章

  1. 游走 bzoj 3143

    游走(2s 128MB)walk [问题描述] [输入格式] [输出格式] [样例输入] 3 3 2 3 1 2 1 3 [样例输出] 3.333 [样例说明] 题解: 主要算法:贪心:高斯消元: 题 ...

  2. 3143: [Hnoi2013]游走 - BZOJ

    Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...

  3. BZOJ 3143 HNOI2013 游走 高斯消元 期望

    这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...

  4. BZOJ 3143 游走 | 数学期望 高斯消元

    啊 我永远喜欢期望题 BZOJ 3143 游走 题意 有一个n个点m条边的无向联通图,每条边按1~m编号,从1号点出发,每次随机选择与当前点相连的一条边,走到这条边的另一个端点,一旦走到n号节点就停下 ...

  5. 【BZOJ】【3143】【HNOI2013】游走

    数学期望/高斯消元/贪心 啊……用贪心的思路明显是要把经过次数期望越大的边的权值定的越小,那么接下来的任务就是求每条边的期望经过次数. 拆边为点?nonono,连接x,y两点的边的期望经过次数明显是 ...

  6. BZOJ 3143 游走(高斯消元)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=3143 题意:一个无向连通图,顶点从1编号到n,边从1编号到m.小Z在该图上进行随机游走, ...

  7. bzoj 3143: [Hnoi2013]游走 高斯消元

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1026  Solved: 448[Submit][Status] ...

  8. BZOJ 3143: [Hnoi2013]游走 [概率DP 高斯消元]

    一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分 ...

  9. bzoj 3143 随机游走

    题意: 给一个简单无向图,一个人从1号节点开始随机游走(即以相同概率走向与它相邻的点),走到n便停止,问每条边期望走的步数. 首先求出每个点期望走到的次数,每条边自然是从它的两个端点走来. /**** ...

  10. bzoj 3143: [Hnoi2013]游走

    Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...

随机推荐

  1. 【小程序】基于.NET CORE2.1 的 微信开放平台 第三方平台开发 教程一 准备工作

    微信第三方平台概述 公众平台第三方平台是为了让公众号或小程序运营者,在面向垂直行业需求时,可以一键授权给第三方平台(并且可以同时授权给多家第三方),通过第三方平台来完成业务,开放给所有通过开发者资质认 ...

  2. jmeter(十五)Jmeter默认报告优化

    一.本文目的: 之前写了两篇文章搭建持续集成接口测试平台(Jenkins+Ant+Jmeter)和ANT批量执行Jmeter脚本,功能实现上都没有什么问题,但是最后生成的报告有一点小问题,虽然不影响使 ...

  3. 鼠标适配器Adapter

    先来看看概念: 现在我们要写一个这样的东西,就是一个窗口,然后鼠标点一下就有一个小圆点,like this: 来我们来看代码: import java.awt.*; import java.util. ...

  4. [转]无废话SharePoint入门教程二[SharePoint发展、工具及术语]

    本文转自:http://www.cnblogs.com/iamlilinfeng/p/3186919.html 一.前言 1.由于上一篇文章的标题命名失误,此篇标题写给百度搜索”什么是SharePoi ...

  5. Spring需要的几个关键配置文件(SSM框架整合)

    打包下载 springmvc-servlet.xml <?xml version="1.0" encoding="UTF-8"?> <bean ...

  6. [BZOJ1009][HNOI2008]GT考试 DP+矩阵快速幂+KMP

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1009 我们令$dp(i,j)$表示已经填了$i$位,而且后缀与不幸运数字匹配了$j$位,那 ...

  7. CAS server 连接mysql的deployerConfigContext.xml配置

    1.deployerConfigContext.xml配置 <?xml version="1.0" encoding="UTF-8"?> <b ...

  8. Sublime Text 2/3 输入法修复[Ubuntu(Debian)]

    一直想找一个可以替代sublime的IDE主要还是hi因为没有好的方法解决中文输入的问题, 今天在网上找到一个非常不错的方法,亲自实验是可行的,就记录下来了,我的系统是ubuntu16.04 Subl ...

  9. 洛谷 P1886 滑动窗口 (数据与其他网站不同。。)

    题目描述 现在有一堆数字共N个数字(N<=10^6),以及一个大小为k的窗口.现在这个从左边开始向右滑动,每次滑动一个单位,求出每次滑动后窗口中的最大值和最小值. 例如: The array i ...

  10. 自定义对话框(jDialog)

    [配置项]jDialog options点击收起 一.接口功能 jDialog的默认配置项,本组件提供的所有对话框,都可以通过修改这些配置项来实现不同的效果. 二.详细配置项 /** * 对话框的默认 ...