zoj 2562 反素数
题目大意:求n范围内最大的反素数(反素数定义:f(x)表示x的因子数,f(x)>f(x1) (0<x1<x))
x用质因数形式为:x=a1^p1*a2^p2......an^pn(ai为素数),那么一个数的因子个数f(x)=(p1+1)*(p2+1)*....*(pn+1)
反素数的性质有:x=a1^p1*a2^p2......an^pn,p1>=p2>=......>=pn
证明:若pi<pj(i<j),那么存在与它因子个数相等的x1且x1<x,与反素数的定义矛盾。
前十四个素数每个素数用一次的乘积已经大于10^16,所以枚举前十四个素数就可以了。
#include<iostream>
#include<cstdio>
using namespace std; typedef long long LL;
int prime[]={,,,,,,,,,,,,,,};
LL n,ans,Max; void dfs(LL sum,LL num,LL k,LL t)
{
if(sum>Max) {Max=sum;ans=num;}
if(sum==Max && num<ans) ans=num;
if(k>) return ;
LL temp=num;
for(int i=;i<=t;i++)
{
if(temp*prime[k]>n) break;
temp*=prime[k];
dfs(sum*(i+),temp,k+,i);
}
} int main()
{
while(~scanf("%lld",&n))
{
ans=n;Max=;
dfs(,,,);
printf("%lld\n",ans);
}
return ;
}
zoj 2562 反素数的更多相关文章
- zoj 1562 反素数 附上个人对反素数性质的证明
反素数的定义:对于不论什么正整数,其约数个数记为.比如,假设某个正整数满足:对随意的正整 数.都有,那么称为反素数. 从反素数的定义中能够看出两个性质: (1)一个反素数的全部质因子必定是从2開始的连 ...
- ZOJ 2562 HDU 4228 反素数
反素数: 对于不论什么正整数x,起约数的个数记做g(x).比如g(1)=1,g(6)=4. 假设某个正整数x满足:对于随意i(0<i<x),都有g(i)<g(x),则称x为反素数. ...
- ZOJ 2562 More Divisors(高合成数)
ZOJ 2562 More Divisors(高合成数) ACM 题目地址:ZOJ 2562 More Divisors 题意: 求小于n的最大的高合成数,高合成数指一类整数,不论什么比它小的自然数 ...
- poj 2886 线段树的更新+反素数
Who Gets the Most Candies? Time Limit: 5000 MS Memory Limit: 0 KB 64-bit integer IO format: %I64d , ...
- ZOJ- 2562 反素数使用
借用了下东北师大ACM的反素数模版. 本来我是在刷线段树的,有一题碰到了反素数,所以学了一下..有反素数的存在,使得一个x ,使得x的约数个数,在1 到 x的所有数里面,是最大的. 这里面还涉及安叔那 ...
- 【POJ2886】Who Gets the Most Candies?-线段树+反素数
Time Limit: 5000MS Memory Limit: 131072K Case Time Limit: 2000MS Description N children are sitting ...
- Prime & 反素数plus
题意: 求因数个数为n的最小正整数k. n<=10^9输出其唯一分解形式 SOL: 模拟题,一眼看过去有点惊讶...这不是我刚看过的反素数吗... 咦数据怎么这么大,恩搞个高精吧... 于是T了 ...
- BZOJ 1053 & 反素数
题意: 反素数,膜一篇GOD's Blog...http://blog.csdn.net/ACdreamers/article/details/25049767 此文一出,无与争锋... CODE: ...
- Who Gets the Most Candies?(线段树 + 反素数 )
Who Gets the Most Candies? Time Limit:5000MS Memory Limit:131072KB 64bit IO Format:%I64d &am ...
随机推荐
- UVA821 PageHopping (Floyd)
求所有点直接的平均最短距离,保存一下出现过的点,题目保证是所有点连通,Floyd求出最短路以后两个for统计一下. #include<bits/stdc++.h> using namesp ...
- solr scheme配置简介
solr 字段配置,和数据库数据索引配置 配置solr字段. schema.xml 文件里配置 先讲解一下,里面的一些字段 1. <types> ... </types> 表示 ...
- poj1338 Ugly Numbers 打表, 递推
题意:一个数的质因子能是2, 3, 5, 那么这个数是丑数. 思路: 打表或者递推. 打表: 若该数为丑数,那么一定能被2 或者3, 或者5 整除, 除完之后则为1. #include <ios ...
- URL URI URN的区别
下面这张图可以完美的解释他们三者之间的关系 URI包含URL和URN Uniform Resource Identifier :统一资源标志符,用于标识某一互联网资源 Uniform Resoutce ...
- Linux网络管理及基础设置
一.网络管理 1 临时配置网络(ip,网关,dns) 用ifconfig命令设定网卡的IP地址: ens33网卡的IP地址为192.168.16.154, ifconfig ens33 192.168 ...
- js获取当前时间的前一天/后一天
Date curDate = new Date();var preDate = new Date(curDate.getTime() - 24*60*60*1000); //前一天var nextDa ...
- Python自动化测试框架——数据驱动(从代码中读取)
今天小编要介绍的是数据驱动最简单和最常用的一种方法,由于只是介绍方法,代码操作后的美观程度略有缺陷,介意者可以自行改动 还是以163邮箱登录为例: 设计一个存放数据的类,这个类的参数是我们需要修改的数 ...
- fshc之请求仲裁机制的代码分析
always@(posedge spi_clk or negedge spiclk_rst_n) begin if(~spiclk_rst_n) arbiter2cache_ack_r <='b ...
- (原)剑指offer变态跳台阶
变态跳台阶 时间限制:1秒空间限制:32768K 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 分析一下明天是个斐波那契 ...
- 经典:区间dp-合并石子
题目链接 :http://acm.nyist.edu.cn/JudgeOnline/problem.php?pid=737 这个动态规划的思是,要得出合并n堆石子的最优答案可以从小到大枚举所有石子合并 ...