zoj 2562 反素数
题目大意:求n范围内最大的反素数(反素数定义:f(x)表示x的因子数,f(x)>f(x1) (0<x1<x))
x用质因数形式为:x=a1^p1*a2^p2......an^pn(ai为素数),那么一个数的因子个数f(x)=(p1+1)*(p2+1)*....*(pn+1)
反素数的性质有:x=a1^p1*a2^p2......an^pn,p1>=p2>=......>=pn
证明:若pi<pj(i<j),那么存在与它因子个数相等的x1且x1<x,与反素数的定义矛盾。
前十四个素数每个素数用一次的乘积已经大于10^16,所以枚举前十四个素数就可以了。
#include<iostream>
#include<cstdio>
using namespace std; typedef long long LL;
int prime[]={,,,,,,,,,,,,,,};
LL n,ans,Max; void dfs(LL sum,LL num,LL k,LL t)
{
if(sum>Max) {Max=sum;ans=num;}
if(sum==Max && num<ans) ans=num;
if(k>) return ;
LL temp=num;
for(int i=;i<=t;i++)
{
if(temp*prime[k]>n) break;
temp*=prime[k];
dfs(sum*(i+),temp,k+,i);
}
} int main()
{
while(~scanf("%lld",&n))
{
ans=n;Max=;
dfs(,,,);
printf("%lld\n",ans);
}
return ;
}
zoj 2562 反素数的更多相关文章
- zoj 1562 反素数 附上个人对反素数性质的证明
反素数的定义:对于不论什么正整数,其约数个数记为.比如,假设某个正整数满足:对随意的正整 数.都有,那么称为反素数. 从反素数的定义中能够看出两个性质: (1)一个反素数的全部质因子必定是从2開始的连 ...
- ZOJ 2562 HDU 4228 反素数
反素数: 对于不论什么正整数x,起约数的个数记做g(x).比如g(1)=1,g(6)=4. 假设某个正整数x满足:对于随意i(0<i<x),都有g(i)<g(x),则称x为反素数. ...
- ZOJ 2562 More Divisors(高合成数)
ZOJ 2562 More Divisors(高合成数) ACM 题目地址:ZOJ 2562 More Divisors 题意: 求小于n的最大的高合成数,高合成数指一类整数,不论什么比它小的自然数 ...
- poj 2886 线段树的更新+反素数
Who Gets the Most Candies? Time Limit: 5000 MS Memory Limit: 0 KB 64-bit integer IO format: %I64d , ...
- ZOJ- 2562 反素数使用
借用了下东北师大ACM的反素数模版. 本来我是在刷线段树的,有一题碰到了反素数,所以学了一下..有反素数的存在,使得一个x ,使得x的约数个数,在1 到 x的所有数里面,是最大的. 这里面还涉及安叔那 ...
- 【POJ2886】Who Gets the Most Candies?-线段树+反素数
Time Limit: 5000MS Memory Limit: 131072K Case Time Limit: 2000MS Description N children are sitting ...
- Prime & 反素数plus
题意: 求因数个数为n的最小正整数k. n<=10^9输出其唯一分解形式 SOL: 模拟题,一眼看过去有点惊讶...这不是我刚看过的反素数吗... 咦数据怎么这么大,恩搞个高精吧... 于是T了 ...
- BZOJ 1053 & 反素数
题意: 反素数,膜一篇GOD's Blog...http://blog.csdn.net/ACdreamers/article/details/25049767 此文一出,无与争锋... CODE: ...
- Who Gets the Most Candies?(线段树 + 反素数 )
Who Gets the Most Candies? Time Limit:5000MS Memory Limit:131072KB 64bit IO Format:%I64d &am ...
随机推荐
- (三)SpringMVC之常用注解
SpringMVC的常用注解 注解 说明 @Controller 用于说明这个类是一个控制器 @RequestMapping 用于注释一个控制器类或者控制器类的方法 @RequestParam 用于将 ...
- iOS 查看包架构信息
lipo -info libUMSocial_Sdk_4.2.a 查看包架构信息
- 迅为iMX6Q/PLUS开发板烧写设备树内核 Qt 系统
迅为iMX6Q 和 iMX6PLUS 两个硬件版本,设备树镜像的烧写方法以及镜像所在目录,镜像名称全部一致. 如果用的是 iMX6Q 版本,想要烧写设备树版本镜像,请使用 iMX6Q 设备树版本的光盘 ...
- initWithNibName/awakeFromNib/initWithCoder
转自: http://leeyin.iteye.com/blog/1040362 每个ios开发者对loadView和viewDidLoad肯定都很熟悉,虽然这两个函数使用上真的是非常简单,但是和类似 ...
- iOS的设计备忘录/资源集合(新手快速开发)
iOS的设计备忘录 随着iOS7更新,风格走上扁平化,大部分iOS设计师及程序员都需要对自己的软件做相关调整,尺寸.Icon.UI等等,我在这里总结一下相关资料,以及提供一些关于iOS7设计素材. 一 ...
- Vue之父子组件的通信
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- ubuntu 18.* 重启网卡
systemctl UNIT LOAD ACTIVE SUB DESCRIPTION proc-sys-fs-binfmt_misc.automount loaded active waiting A ...
- snprintf()返回值的陷阱
int snprintf(char *restrict buf, size_t n, const char * restrict format, ...); 函数说明:最多从源串中拷贝n-1个字符到 ...
- tomcat中如何禁止和允许主机或地址访问
1.tomcat中如何禁止和允许列目录下的文件 在{tomcat_home}/conf/web.xml中,把listings参数设置成false即可,如下: <servlet>...< ...
- (32)zabbix分布式监控proxy vs nodes
概述 zabbix为IT基础设施提供有效和可用的分布式监控,zabbix提供了两种解决方案,分别为:proxy和nodes.proxy代替zabbix server在本地检索数据,然后提交给zabbi ...