题意:

铭铭有n个十分漂亮的珠子和若干根颜色不同的绳子。现在铭铭想用绳子把所有的珠子连接成一个整体。
现在已知所有珠子互不相同,用整数1到n编号。对于第i个珠子和第j个珠子,可以选择不用绳子连接,或者在c[i,j]根不同颜色的绳子中选择一根将它们连接。

如果把珠子看作点,把绳子看作边,将所有珠子连成一个整体即为所有点构成一个连通图。特别地,珠子不能和自己连接。
铭铭希望知道总共有多少种不同的方案将所有珠子连成一个整体。由于答案可能很大,因此只需输出答案对1000000007取模的结果。

n<=16,a[i][j]<=1e9+7

思路:

还记得n个点有标号的无向连通图个数怎么求吗?如果记得的话,此题就简单了。
用f[S]表示与1号点连通的点的状态为S的方案数。我们先与处理出g数组,g[S]=∏u,v∈S(c[u][v]+1),然后f[S]就等于g[S]减去S中某些点与1号点不连通的方案数。
那么我们枚举此时与1号点连通的点的状态,其余的点与这个连通块均没有边相连,但是其余的点之间可以任意连边,
所以有:
f[S]=∑S′⊊Sf[S′]×g[S−S′]
所以时间复杂度就是枚举子集的O(3^n)
需要注意的是k=log(x)/log(2)+1这种写法似乎在BZOJ上不能用,需要预处理或者暴力
 #include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<map>
#include<set>
#include<cmath>
using namespace std;
long long dp[<<],f[<<];
long long a[][];
const int MOD=;
int n; int lowbit(int x)
{
return (x&(-x));
} int who(int x)
{
int s=;
int k=x;
while(k)
{
s++;
k>>=;
}
return s;
} int main()
{ scanf("%d",&n);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++) scanf("%lld",&a[i][j]);
f[]=; int M=(<<n)-;
for(int i=;i<=M;i++)
{
int x=lowbit(i);
int y=who(x);
f[i]=f[i-x];
for(int j=;j<=n;j++)
if((y!=j)&&(i&(<<(j-)))) f[i]=f[i]*(a[y][j]+)%MOD;
} dp[]=;
for(int i=;i<=M;i++)
if(i&)
{
int v=(i-);
dp[i]=f[i];
while(v)
{
dp[i]=dp[i]-(f[v]*dp[i-v])%MOD;
dp[i]=(dp[i]%MOD+MOD)%MOD;
v=((i-)&(v-));
}
}
printf("%lld\n",dp[M]);
return ;
}

【BZOJ2560】串珠子(状压DP,容斥原理)的更多相关文章

  1. 【bzoj2560】串珠子 状压dp+容斥原理

    题目描述 有 $n$ 个点,点 $i$ 和点 $j$ 之间可以连 $0\sim c_{i,j}$ 条无向边.求连成一张无向连通图的方案数模 $10^9+7$ .两个方案不同,当且仅当:存在点对 $(i ...

  2. bzoj2560串珠子 状压dp+容斥(?)

    2560: 串珠子 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 515  Solved: 348[Submit][Status][Discuss] ...

  3. bzoj2560 串珠子 状压DP

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2560 题解 大概是这类关于无向图的联通性计数的套路了. 一开始我想的是这样的,考虑容斥,那么就 ...

  4. BZOJ 2560: 串珠子 (状压DP+枚举子集补集+容斥)

    (Noip提高组及以下),有意者请联系Lydsy2012@163.com,仅限教师及家长用户. 2560: 串珠子 Time Limit: 10 Sec Memory Limit: 128 MB Su ...

  5. 【BZOJ2560】串珠子 状压DP+容斥

    [BZOJ2560]串珠子 Description 铭铭有n个十分漂亮的珠子和若干根颜色不同的绳子.现在铭铭想用绳子把所有的珠子连接成一个整体. 现在已知所有珠子互不相同,用整数1到n编号.对于第i个 ...

  6. 【uoj#37/bzoj3812】[清华集训2014]主旋律 状压dp+容斥原理

    题目描述 求一张有向图的强连通生成子图的数目对 $10^9+7$ 取模的结果. 题解 状压dp+容斥原理 设 $f[i]$ 表示点集 $i$ 强连通生成子图的数目,容易想到使用总方案数 $2^{sum ...

  7. BZOJ1195 [HNOI2006]最短母串 【状压dp】

    题目 给定n个字符串(S1,S2,„,Sn),要求找到一个最短的字符串T,使得这n个字符串(S1,S2,„,Sn)都是T的子串. 输入格式 第一行是一个正整数n(n<=12),表示给定的字符串的 ...

  8. BZOJ2669 [cqoi2012]局部极小值 状压DP 容斥原理

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2669 题意概括 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所 ...

  9. 4455: [Zjoi2016]小星星|状压DP|容斥原理

    OrzSDOIR1ak的晨神 能够考虑状压DP枚举子集,求出仅仅保证连通性不保证一一相应的状态下的方案数,然后容斥一下就是终于的答案 #include<algorithm> #includ ...

  10. 【UVA1633】禁止的回文串(状压DP)

    题意: 输入正整数n和k(1<=n<=400,1<=k<=10),求长度为n的01串中有多少个不含长度至少为k的回文连续子串.例如,n=k=3时只有4个串满足条件:001,01 ...

随机推荐

  1. AJPFX总结方法重载与方法重写的区别

    方法重载在同一个类中,可以出现同名方法,但是这些同名方法的参数列表必须不同,这样定义方法叫做方法重载.方法重载的特点重载的注意事项重载与返回值无关重载与具体的变量标识符无关重载只与方法名与参数相关重载 ...

  2. windows下常用的一些shell命令

    看的视频上都是linux系统的shell命令,和windows区别很多.所以整理了windows常用的一些shell命令. 注意:并不是每个都试验过,使用时还需自己验证下. 学system和os,su ...

  3. hihocoder1779 公路收费

    思路: 枚举每个点做根即可. 实现: #include <bits/stdc++.h> using namespace std; typedef long long ll; const l ...

  4. CF778A(round 402 div.2 D) String Game

    题意: Little Nastya has a hobby, she likes to remove some letters from word, to obtain another word. B ...

  5. 批量部署Hadoop集群环境(1)

    批量部署Hadoop集群环境(1) 1. 项目简介: 前言:云火的一塌糊涂,加上自大二就跟随一位教授做大数据项目,所以很早就产生了兴趣,随着知识的积累,虚拟机已经不能满足了,这次在服务器上以生产环境来 ...

  6. Java虚拟机性能调优相关

    一.JVM内存模型及垃圾收集算法 1.根据Java虚拟机规范,JVM将内存划分为:New(年轻代)Tenured(年老代)永久代(Perm) 其中New和Tenured属于堆内存,堆内存会从JVM启动 ...

  7. 阿里云服务器ECS部署应用教程

    购买阿里云服务器 大多数云服务器默认安装的语言运行环境版本都很旧了,python用的还是2.7,JDK用的还是1.6的,在ECS云服务器中可以自行安装,包括python3.4之类的. 在次页面购买EC ...

  8. hdu5792 World is Exploding(多校第五场)树状数组求逆序对 离散化

    题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=5792 题目描述:给你n个值,每个值用A[i]表示,然后问你能否找到多少组(a,b,c,d)四个编号,四 ...

  9. Dreamoon and MRT(二元枚举)

    题目 数轴上有M个点a1.a2....am,另有一个数列p1.p2....pn,(1 ≤ pii ≤ M). 给定d1.d2....dn,对所有的 i (1 ≤ i ≤ n),已知 |api+1 - ...

  10. flask_第一个程序

    安装flask sudo pip3 install flask falsk最小应用 from flask import Flask app = Flask(__name__) @app.route(' ...