HDU 6397 组合数学+容斥 母函数
Character Encoding
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 1473 Accepted Submission(s): 546
For example, in ASCII encoding system, the word wdy is encoded as [119, 100, 121], while jsw is encoded as [106, 115, 119]. It can be noticed that both 119+100+121=340 and 106+115+119=340, thus the sum of the encoded numbers of the two words are equal. In fact, there are in all 903 such words of length 3 in an encoding system of alphabet size 128 (in this example, ASCII). The problem is as follows: given an encoding system of alphabet size n where each character is encoded as a number between 0 and n−1 inclusive, how many different words of length m are there, such that the sum of the encoded numbers of all characters is equal to k?
Since the answer may be large, you only need to output it modulo 998244353.
Each test case includes a line of three integers n,m,k (1≤n,m≤105,0≤k≤105), denoting the size of the alphabet of the encoding system, the length of the word, and the required sum of the encoded numbers of all characters, respectively.
It is guaranteed that the sum of n, the sum of m and the sum of k don't exceed 5×106, respectively.
容斥写法
x1+x2+...+xm = k (xi>=0) 共有C(k+m-1,m-1) 种 插板法
如果有c个违反条件 把每一个违反条件的x减去n
x1'+x2'+x3'+x4'+x5'+...+xn'= k-c*n xi>=0 共有 C(k-c*n+m-1,m-1)种
容斥系数 变量选法
ans = (-1)^c * C(m,c) * C(k-cn+m-1,m-1)
母函数写法
1+x+x^2+...+x^(n-1)=(1-x^n)/(1-x)
(1+x+x^2+...+x^(n-1))^m
=(1-x^n)^m/(1-x)^m
=(1-x^n)^m*(1-x)^(-m)
=(1-x^n)^m*(sum_ (x^i)*C(m+i-1,m-1)) //上篇博客说的核武器。。。。
ans=x^k 的系数
左边二项式展开 按照每个i 右边应该有k-ni
ans= sum (-1)^i*C(m,i)*C(m+k-n*I-1,m-1)
左边 x^n*i 右边x^(k-n*i)
系数(-1)^i*C(m,i) 系数C(m+k-n*I-1,m-1)
AC代码
#include <bits/stdc++.h>
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define all(a) (a).begin(), (a).end()
#define fillchar(a, x) memset(a, x, sizeof(a))
#define huan printf("\n");
#define debug(a,b) cout<<a<<" "<<b<<" "<<endl;
using namespace std;
const int maxn= 3e5+;
const int inf = 0x3f3f3f3f,mod=;
typedef long long ll;
ll fac[maxn],inv[maxn];
void init()
{
fac[]=fac[]=;
inv[]=inv[]=;
for(ll i=;i<maxn;i++)
{
fac[i]=fac[i-]*i%mod;
inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
}
for(ll i=;i<maxn;i++)
inv[i]=inv[i-]*inv[i]%mod;
}
ll C(ll x,ll y)
{
if(y>x) return ;
if(y==||x==) return ;
return fac[x]*inv[y]%mod*inv[x-y]%mod;
}
int main()
{
ll n,m,k,t;
init();
cin>>t;
while(t--)
{
cin>>n>>m>>k;
if(k==)
{
cout<<<<endl;
continue;
}
else if((n-)*m<k)
{
cout<<<<endl;
continue;
}
int c=min(k/n,m);
ll ans=;
for(int i=;i<=c;i++)
{
if(i%==)
ans=(ans+C(m,i)*C(k-i*n+m-,m-)%mod)%mod;
else
ans=(ans-C(m,i)*C(k-i*n+m-,m-)%mod+mod)%mod;
}
cout<<ans<<endl;
}
}
HDU 6397 组合数学+容斥 母函数的更多相关文章
- hdu 5514 Frogs(容斥)
Frogs Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submi ...
- HDU 5213 分块 容斥
给出n个数,给出m个询问,询问 区间[l,r] [u,v],在两个区间内分别取一个数,两个的和为k的对数数量. $k<=2*N$,$n <= 30000$ 发现可以容斥简化一个询问.一个询 ...
- HDU 2588 思维 容斥
求满足$1<=X<=N ,(X,N)>=M$的个数,其中$N, M (2<=N<=1000000000, 1<=M<=N)$. 首先,假定$(x, n)=m$ ...
- HDU 6397 Character Encoding (组合数学 + 容斥)
题意: 析:首先很容易可以看出来使用FFT是能够做的,但是时间上一定会TLE的,可以使用公式化简,最后能够化简到最简单的模式. 其实考虑使用组合数学,如果这个 xi 没有限制,那么就是求 x1 + x ...
- HDU 1695 GCD 容斥
GCD 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=1695 Description Given 5 integers: a, b, c, d, k ...
- HDU 5514 Frogs 容斥定理
Frogs Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5514 De ...
- hdu 5768 Lucky7 容斥
Lucky7 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 Description When ?? was born, seven crow ...
- hdu 5212 反向容斥或者莫比
http://acm.hdu.edu.cn/showproblem.php?pid=5212 题意:忽略.. 题解:把题目转化为求每个gcd的贡献.(http://www.cnblogs.com/z1 ...
- ACM-ICPC 2015 沈阳赛区现场赛 F. Frogs && HDU 5514(容斥)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5514 题意:有m个石子围成一圈, 有n只青蛙从跳石子, 都从0号石子开始, 每只能越过xi个石子.问所 ...
随机推荐
- 洛谷 P2788 数学1(math1)- 加减算式
题目背景 蒟蒻HansBug在数学考场上,挠了无数次的头,可脑子里还是一片空白. 题目描述 好不容易啊,HansBug终于熬到了做到数学最后一题的时刻了,眼前是一堆杂乱的加减算式.显然成功就在眼前了. ...
- DBMS的工作模式
数据库管理系统(DBMS)是指数据库系统中对数据进行管理的软件系统,它是数据库系统的核心组成部分,对数据库的一切操作(增删改查)都是通过DBMS进行的 DBMS的工作模式如下: 1>接受应用程序 ...
- upload 上传按钮组件 iview
<!-- * @description 导入Excel * @fileName importExcel.vue * @author 彭成刚 * @date // :: * @version V1 ...
- Element UI tree 回显问题
Part.1 问题 写项目时遇到一个棘手的问题,在做关于权限功能时,点击修改需要显示角色原本对应的权限.涉及到了 tree 组件回显,但是有一个很尴尬的问题:tree 组件只要父节点选中,那么子节点就 ...
- 20道必须掌握的C++面试题
20道必须掌握的C++面试题 在面试C++方面的工作时,经常会遇到各种面试题,这对应聘人员的知识掌握能力要求较高.本文将为大家带来的就是20道必须掌握的C++面试题,不要错过哦! 问1:请用简单的语言 ...
- dockerfile note
dockerfile note reference summary defination docker can build images automatically by reading the in ...
- python interview questions
referce:python interview questions top 50 refercence:python interview questions top 15 summary Q: wh ...
- c++_核桃的数量
#include <iostream> using namespace std; int gcd(int x,int y){ int temp; ){ temp=x%y; x=y; y=t ...
- java io-----转
https://blog.csdn.net/zch19960629/article/details/77917739 输入输出的重要性: 输入和输出功能是Java对程序处理数据能力的提高,Ja ...
- my97datepicker插件日期值改变事件 等同于input的onchang()时间
官网Demo地址http://www.my97.net/demo/index.htm <input type="text" class="Wdate" v ...