MapReduce的Reduce side Join
reduce side join是全部join中用时最长的一种join,可是这样的方法可以适用内连接、left外连接、right外连接、full外连接和反连接等全部的join方式。reduce side
join不仅能够对小数据进行join,也能够对大数据进行join,可是大数据会占用大量的集群内部网络IO,由于全部数据终于要写入到reduce端进行join。
假设要做join的数据量很大的话。就不得不用reduce join了。
if (!listA.isEmpty() && !listB.isEmpty()) {
for (Text A : listA) {
for (Text B : listB) {
context.write(A, B);
}
}
}
// For each entry in A,
for (Text A : listA) {
// If list B is not empty, join A and B
if (!listB.isEmpty()) {
for (Text B : listB) {
context.write(A, B);
}
} else {
// Else, output A by itself
context.write(A, EMPTY_TEXT);
}
}
// For each entry in B,
for (Text B : listB) {
// If list A is not empty, join A and B
if (!listA.isEmpty()) {
for (Text A : listA) {
context.write(A, B);
}
} else {
// Else, output B by itself
context.write(EMPTY_TEXT, B);
}
}
// If list A is not empty
if (!listA.isEmpty()) {
// For each entry in A
for (Text A : listA) {
// If list B is not empty, join A with B
if (!listB.isEmpty()) {
for (Text B : listB) {
context.write(A, B);
}
} else {
// Else, output A by itself
context.write(A, EMPTY_TEXT);
}
}
} else {
// If list A is empty, just output B
for (Text B : listB) {
context.write(EMPTY_TEXT, B);
}
}
// If list A is empty and B is empty or vice versa
if (listA.isEmpty() ^ listB.isEmpty()) {
// Iterate both A and B with null values
// The previous XOR check will make sure exactly one of
// these lists is empty and therefore the list will be skipped
for (Text A : listA) {
context.write(A, EMPTY_TEXT);
}
for (Text B : listB) {
context.write(EMPTY_TEXT, B);
}
}
---------------------------
username cityid
--------------------------
Li lei, 1
Xiao hong, 2
Lily, 3
Lucy, 3
Daive, 4
Jake, 5
Xiao Ming, 6
---------------------------
cityid cityname
--------------------------
1, Shanghai
2, Beijing
3, Jinan
4, Guangzhou
7, Wuhan
8, Shenzhen
package com.study.hadoop.mapreduce; import java.io.IOException;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.mapreduce.lib.input.MultipleInputs;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class ReduceJoin { //user map
public static class UserJoinMapper extends Mapper<Object, Text, Text, Text>{
private Text outKey = new Text();
private Text outValue = new Text();
@Override
protected void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
// TODO Auto-generated method stub
String line = value.toString();
String[] items = line.split(","); outKey.set(items[1]);
outValue.set("A"+items[0]);
context.write(outKey, outValue);
}
}
//city map
public static class CityJoinMapper extends Mapper<Object, Text, Text, Text>{
// TODO Auto-generated constructor stub
private Text outKey = new Text();
private Text outValue = new Text();
@Override
protected void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
// TODO Auto-generated method stub
String line = value.toString();
String[] items = line.split(","); outKey.set(items[0]);
outValue.set("B"+items[1]);
context.write(outKey, outValue);
} }
public static class JoinReducer extends Reducer<Text, Text, Text, Text>{
// TODO Auto-generated constructor stub
//Join type:{inner,leftOuter,rightOuter,fullOuter,anti}
private String joinType = null;
private static final Text EMPTY_VALUE = new Text("");
private List<Text> listA = new ArrayList<Text>();
private List<Text> listB = new ArrayList<Text>();
@Override
protected void setup(Context context)
throws IOException, InterruptedException {
// TODO Auto-generated method stub
//获取join的类型
joinType = context.getConfiguration().get("join.type");
} @Override
protected void reduce(Text key, Iterable<Text> values,Context context)
throws IOException, InterruptedException {
// TODO Auto-generated method stub
listA.clear();
listB.clear(); Iterator<Text> iterator = values.iterator();
while(iterator.hasNext()){
String value = iterator.next().toString();
if(value.charAt(0)=='A')
listA.add(new Text(value.substring(1)));
if(value.charAt(0)=='B')
listB.add(new Text(value.substring(1)));
}
joinAndWrite(context);
} private void joinAndWrite(Context context)
throws IOException, InterruptedException{
//inner join
if(joinType.equalsIgnoreCase("inner")){
if(!listA.isEmpty() && !listB.isEmpty()) {
for (Text A : listA)
for(Text B : listB){
context.write(A, B);
}
}
}
//left outer join
if(joinType.equalsIgnoreCase("leftouter")){
if(!listA.isEmpty()){
for (Text A : listA){
if(!listB.isEmpty()){
for(Text B: listB){
context.write(A, B);
}
}
else{
context.write(A, EMPTY_VALUE);
}
}
}
}
//right outer join
else if(joinType.equalsIgnoreCase("rightouter")){
if(!listB.isEmpty()){
for(Text B: listB){
if(!listA.isEmpty()){
for(Text A: listA)
context.write(A, B);
}else {
context.write(EMPTY_VALUE, B);
}
}
}
}
//full outer join
else if(joinType.equalsIgnoreCase("fullouter")){
if(!listA.isEmpty()){
for (Text A : listA){
if(!listB.isEmpty()){
for(Text B : listB){
context.write(A, B);
}
}else {
context.write(A, EMPTY_VALUE);
}
}
}else{
for(Text B : listB)
context.write(EMPTY_VALUE, B);
}
}
//anti join
else if(joinType.equalsIgnoreCase("anti")){
if(listA.isEmpty() ^ listB.isEmpty()){
for(Text A : listA)
context.write(A, EMPTY_VALUE);
for(Text B : listB)
context.write(EMPTY_VALUE, B);
}
}
}
} public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
// TODO Auto-generated method stub
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs(); if (otherArgs.length < 4)
{
System.err.println("params:<UserInDir> <CityInDir> <OutDir> <join Type>");
System.exit(1);
}
Job job = new Job(conf,"Reduce side join Job");
job.setJarByClass(ReduceJoin.class);
job.setReducerClass(JoinReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
MultipleInputs.addInputPath(job, new Path(otherArgs[0]), TextInputFormat.class, UserJoinMapper.class);
MultipleInputs.addInputPath(job, new Path(otherArgs[1]), TextInputFormat.class, CityJoinMapper.class);
FileOutputFormat.setOutputPath(job, new Path(otherArgs[2]));
job.getConfiguration().set("join.type", otherArgs[3]); System.exit(job.waitForCompletion(true) ? 0 : 1);
} }
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvY2hhb2xvdmVqaWE=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvY2hhb2xvdmVqaWE=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">
MapReduce的Reduce side Join的更多相关文章
- 0 MapReduce实现Reduce Side Join操作
一.准备两张表以及对应的数据 (1)m_ys_lab_jointest_a(以下简称表A) 建表语句: create table if not exists m_ys_lab_jointest_a ( ...
- hadoop 多表join:Map side join及Reduce side join范例
最近在准备抽取数据的工作.有一个id集合200多M,要从另一个500GB的数据集合中抽取出所有id集合中包含的数据集.id数据集合中每一个行就是一个id的字符串(Reduce side join要在每 ...
- hadoop的压缩解压缩,reduce端join,map端join
hadoop的压缩解压缩 hadoop对于常见的几种压缩算法对于我们的mapreduce都是内置支持,不需要我们关心.经过map之后,数据会产生输出经过shuffle,这个时候的shuffle过程特别 ...
- MapReduce编程之Semi Join多种应用场景与使用
Map Join 实现方式一 ● 使用场景:一个大表(整张表内存放不下,但表中的key内存放得下),一个超大表 ● 实现方式:分布式缓存 ● 用法: SemiJoin就是所谓的半连接,其实仔细一看就是 ...
- Map Reduce Application(Join)
We are going to explain how join works in MR , we will focus on reduce side join and map side join. ...
- mapreduce作业reduce被大量kill掉
之前有一段时间.我们的hadoop2.4集群压力非常大.导致提交的job出现大量的reduce被kill掉.同样的job执行时间比在hadoop0.20.203上面长了非常多.这个问题事实上是redu ...
- Reduce Side Join实现
关于reduce边join,其最重要的是使用MultipleInputs.addInputPath这个api对不同的表使用不同的Map,然后在每个Map里做一下该表的标识,最后到了Reduce端再根据 ...
- Yarn源码分析之参数mapreduce.job.reduce.slowstart.completedmaps介绍
mapreduce.job.reduce.slowstart.completedmaps是MapReduce编程模型中的一个参数,这个参数的含义是,当Map Task完成的比例达到该值后才会为Redu ...
- mapreduce中reduce没有执行
hadoop执行mapreduce过程reduce不执行原因 1.如果你的map过程中没有context.write()是不执行reduce过程的:2.如果你的map过程中context.write( ...
随机推荐
- CREATE SEQUENCE - 创建一个新的序列发生器
SYNOPSIS CREATE [ TEMPORARY | TEMP ] SEQUENCE name [ INCREMENT [ BY ] increment ] [ MINVALUE minvalu ...
- Java基础(十二)--clone()方法
Clone在Java中就是用来复制对象,通过分配一个和源对象相同大小的内存空间,然后创建一个新的对象,那么他和=的区别在哪? 通过=实现对象拷贝: @Data @NoArgsConstructor @ ...
- GRPC在NET上的应用
GRPC是什么? GRPC是一个开源RPC框架,于2015年3月开源,其由Google主要面向移动应用开发并基于HTTP/2协议标准而设计,基于Protobuf 3.0(Protocol Buffer ...
- wampserver更改语言步骤
wampserver更改语言步骤的具体步骤: 右击屏幕右下角图标>选择language>选择更改的语言
- ZOJ - 3204 Connect them 最小生成树
Connect them ZOJ - 3204 You have n computers numbered from 1 to n and you want to connect them to ma ...
- CF1029E Tree with Small Distances
题目描述 给定一棵树.要求往树中加入一些边使得从1到其他节点的距离至多是2 . 输出加入边的最小数量.(边全部都是无向的) 题解:好多人都说是贪心,但是我写的是树形dp. (这道题实在太像小胖守皇宫了 ...
- [GXOI/GZOI2019]与或和(单调栈)
想了想决定把这几题也随便水个解题报告... bzoj luogu 思路: 首先肯定得拆成二进制30位啊 此后每一位的就是个01矩阵 Q1就是全是1的矩阵个数 Q2就是总矩阵个数减去全是0的矩阵个数 ...
- jenkins构建项目记录1
jenkins安装见上篇随笔 1.新建任务 2.构建一个自由风格的软件项目 3.源码管理设置 4.构建环境 5.构建 6.构建后操作
- 我能考虑到的数组(老)方法就这些了(es5)
代码注释都写的很清楚了 关键字:斐波那契数组.二维数组.多维数组(矩阵)... <!DOCTYPE html> <html lang="en"> <h ...
- 【转载】Hadoop NameNode 高可用 (High Availability) 实现解析
转载:https://www.ibm.com/developerworks/cn/opensource/os-cn-hadoop-name-node/ NameNode 高可用整体架构概述 在 Had ...