P2158 [SDOI2008]仪仗队

找规律大水题嘛,如果你做过P1170 兔八哥与猎人

这题得到的规律是$a,b,c,d$,若$gcd(a-b,c-d)==1$ 那么$a,b$就能看到$c,d$

显然这题暴力枚举$O(n^2)$是过去的,然后有了规律,那么这题也就是要求$\sum_{i=1}^{n} \varphi i$

据说线性筛可以筛欧拉函数,来瞧一瞧

首先根据欧拉函数通式$\varphi(x)=x\prod\limits_{i=1}^{n}{(1-\frac{1}{p_i})}$

其中$p_1, p_2……p_n$为$x$的所有质因数,$x$是不为0的整数。

埃式筛法:

for(int i=;i<=n;i++)
ph[i]=i;
for(int i=;i<=n;i++){
if(ph[i]==i)
for(int j=i;j<=n;j+=i)
ph[j]=ph[j]/i*(i-);
}

几个重要的性质

1.$\varphi(1) =1$

2.$n$是质数,$\varphi (n)= n-1$

3.欧拉函数是积性函数,所以当$a,b$互质时,$\varphi (a\times b) = \varphi (a)\times \varphi(b) $

4.当$p$为质数时,$\varphi (p^k)=p^k -p^{k-1} =(p-1)*p^{k-1}$因为除$p$的倍数外,其他数都跟$n$互质。

5.当$n$为奇数时,$\varphi (2n)=\varphi (n)$,证明与上述类似。

6.当$n>2$时,$\varphi (n)$都是偶数;

欧拉筛法(线性筛法):

void OULA(){
for(int i=;i<=N;i++){
if(!vis[i]) {
prime[++tot]=i;
ph[i]=i-;
}
for(int j=;j<=tot&&i*prime[j]<=N;j++){
vis[prime[j]*i]=;
if(i%prime[j]) ph[prime[j]*i]=(prime[j]-)*ph[i];
else {
ph[prime[j]*i]=ph[i]*prime[j];
break;
}
}
}
}

洛谷——P2158 [SDOI2008]仪仗队的更多相关文章

  1. 洛谷 P2158 [SDOI2008]仪仗队 解题报告

    P2158 [SDOI2008]仪仗队 题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线 ...

  2. 洛谷P2158 [SDOI2008]仪仗队

    题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...

  3. 洛谷 P2158 [SDOI2008]仪仗队 && 洛谷 P1447 [NOI2010]能量采集

    https://www.luogu.org/problemnew/show/P2158 以人所在位置为(0,0)建立坐标系, 显然除了(0,1)和(1,0)外,可以只在坐标(x,y)的gcd(x,y) ...

  4. 洛谷P2158 [SDOI2008]仪仗队 欧拉函数的应用

    https://www.luogu.org/problem/P2158 #include<bits/stdc++.h> #define int long long using namesp ...

  5. 洛谷 P2158 [SDOI2008]仪仗队

    题意简述 给定一个n,求gcd(x, y) = 1(x, y <= n)的(x, y)个数 题解思路 欧拉函数, 则gcd(x, y) = 1(x <= y <= n)的个数 ans ...

  6. 洛谷 2158 [SDOI2008]仪仗队

    Description 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是 ...

  7. P2158 [SDOI2008]仪仗队

    P2158 [SDOI2008]仪仗队图是关于y=x对称的,横纵坐标一定是互质的否则在之前就被扫过了,所以就可以用欧拉函数再*2就完了. #include<iostream> #inclu ...

  8. P2158 [SDOI2008]仪仗队 && 欧拉函数

    P2158 [SDOI2008]仪仗队 题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线 ...

  9. 洛谷 P1984 [SDOI2008]烧水问题

    洛谷 P1984 [SDOI2008]烧水问题 题目描述 把总质量为1kg的水分装在n个杯子里,每杯水的质量均为(1/n)kg,初始温度均为0℃.现需要把每一杯水都烧开.我们可以对任意一杯水进行加热. ...

随机推荐

  1. 2018GDKOI游记

    我很后悔DAY1考完就写了小结.没人看题解,却这么多人来揭我伤疤.既然明摆着摆出来就是刷访问量,下面的就别看了吧. --------------------分割线------------------- ...

  2. html5 canvas程序演示--P1197 [JSOI2008]星球大战

    html5 canvas程序演示--P1197 [JSOI2008]星球大战 <!doctype html> <html> <head> <meta char ...

  3. C#调用Oracle存储过程的方法

    C#调用Oracle存储过程的方法 准备: 环境:pl/sql+oracle9i+vs2008 创建表test: create table TEST(  ID      NUMBER,//编号  NA ...

  4. Python 常用算法记录

    一.递归 汉诺塔算法:把A柱的盘子,移动到C柱上,最少需要移动几次,大盘子只能在小盘子下面 1.当盘子的个数为n时,移动的次数应等于2^n – 1 2.描述盘子从A到C: (1)如果A只有一个圆盘,可 ...

  5. Linux 系统管理命令 - lsof - 查看进程打开的文件

    命令详解 重要星级: ★★★★★ 功能说明: 全名为 list open files,也就是列举系统中已经被打开的文件,通过 lsof 命令,就可以根据文件找到对应的进程信息,也可以根据进程信息找到进 ...

  6. MySQL权限及登陆、退出方法

    用户权限列表 SELECT 查询权限 INSERT 插入权限 UPDATE 更新权限 DELETE 删除权限(用于删除数据) CREATE 创建权限 DROP 删除权限(用户删除文件) RELOAD ...

  7. 引水入城 2010年NOIP全国联赛提高组(bfs+贪心)

    1066 引水入城 2010年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond     题目描述 Description 在一个遥远 ...

  8. wamp集成环境下帝国备份出错

    我在本地wamp环境下面使用帝国备份王时,报错信息如下: Parse error: syntaxerror, unexpected $end in D:wampwwwhuifuclassfunctio ...

  9. Java中的APT的工作过程

    Java中的APT的工作过程 APT即Annotatino Processing Tool, 他的作用是处理代码中的注解, 用来生成代码, 换句话说, 这是用代码生成代码的工具, 减少boilerpl ...

  10. SVN安装失败提示

    svnserve: error while loading shared libraries: libaprutil-1.so.0: cannot open shared object file: 1 ...