最长上升子序列(动态规划递推,LIS)
1759:最长上升子序列
题目:
- 总时间限制:
- 2000ms
- 内存限制:
- 65536kB
- 描述
- 一个数的序列bi,当b1 < b2 < ... < bS的时候,我们称这个序列是上升的。对于给定的一个序列(a1, a2, ..., aN),我们可以得到一些上升的子序列(ai1, ai2, ..., aiK),这里1 <= i1 < i2 < ... < iK <= N。比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8).
你的任务,就是对于给定的序列,求出最长上升子序列的长度。
- 输入
- 输入的第一行是序列的长度N (1 <= N <= 1000)。第二行给出序列中的N个整数,这些整数的取值范围都在0到10000。
- 输出
- 最长上升子序列的长度。
- 样例输入
-
7
1 7 3 5 9 4 8 - 样例输出
- 4
- 下面放一下ac代码
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const ll maxn=+;
ll f[maxn];//用来递推的数组
ll a[maxn];//存储输入数据 int main()
{
ll n;
cin>>n;
for(ll i=;i<=n;i++)
{
scanf("%lld",&a[i]);//输入数据
f[i]=;//顺便为f数组赋初值
/*
f数组的意义是以a[i]结尾的序列能拥有的最大长度
*/
} for(ll i=;i<=n;i++)//i=1时f[1]肯定等于1,所以从2开始
for(ll j=;j<=i-;j++)//j代表枚举f[i]前面的所有可能
{
if(a[i]>a[j])//如果可以加在它后面,记住这里的子序列是可以间断的
f[i]=max(f[i],f[j]+);
}
ll ans=f[];//为ans初定义
for(ll i=;i<=n;i++)//这里的意思是找出f[i=1~n]的最大值
if(f[i]>ans)
ans=f[i];
cout<<ans<<endl;
}
点击打开折叠代码
然后开始解释一下这道题
我们建立一个数组f[maxn],
f数组的意义是以a[i]结尾的序列能拥有的最大上升长度
毫无疑问f[1]始终=1,然后我们对其他f[i]也都赋初始值为1,因为,如果f[i]就只包括a[i]一个的话长度就是1呀
然后核心是状态转移方程
- if(a[i]>a[j])//如果可以加在它后面,记住这里的子序列是可以间断的
f[i]=max(f[i],f[j]+1); - 先说明j=1~i-1,因为a[i]只能拼接在它前面的序列嘛,所以j最大为i-1
- 解释一下这段代码:
- if(a[i]>a[j])就是说可以拼接,因为符合上升条件
- 然后f[i]=max(f[i],f[j]+1);这里这段语句可能会执行几次,所以有f[i]=max(f[i],....)这样的东西,就是新的自己和旧的自己比较的意思,我们平时用的a=a+1,也是这样,两个a不一样,a=a+1这个栗子是教练教我的,讲的真好
- 然后f[i]=max(f[i],f[j]+1)的意思就是在前面已经判断了可以拼接的基础上,如果加在前面的f[j]序列上更长的话就f[i]=f[j]+1(+1的意思是相对于前面的f[j]长度又多了一个,也就是多了a[i]),否则就f[i]=f[i]不变
推荐一道类似的题目:
最大子段和(洛谷P1115,动态规划递推)
最长上升子序列(动态规划递推,LIS)的更多相关文章
- 最大子段和(洛谷P1115,动态规划递推)
洛谷题目链接 题目赋值出来格式有问题,所以我就只放题目链接了 下面为ac代码 #include<bits/stdc++.h> #define ll long long using name ...
- 九度OJ 1533 最长上升子序列 -- 动态规划
题目地址:http://ac.jobdu.com/problem.php?pid=1533 题目描述: 给定一个整型数组, 求这个数组的最长严格递增子序列的长度. 譬如序列1 2 2 4 3 的最长严 ...
- 300. Longest Increasing Subsequence(LIS最长递增子序列 动态规划)
Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...
- 每日一题 LeetCode 491. 递增子序列 【递推】【递增子序列】【动态规划】
题目链接 https://leetcode-cn.com/problems/increasing-subsequences/ 题目说明 题解 主要方法:递推:动态规划 解释说明: 数据表示:观察数据范 ...
- 【ACM】最长公共子序列 - 动态规划
最长公共子序列 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 咱们就不拐弯抹角了,如题,需要你做的就是写一个程序,得出最长公共子序列.tip:最长公共子序列也称作最 ...
- bzoj 3173 [Tjoi2013]最长上升子序列 (treap模拟+lis)
[Tjoi2013]最长上升子序列 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2213 Solved: 1119[Submit][Status] ...
- C++求解汉字字符串的最长公共子序列 动态规划
近期,我在网上看了一些动态规划求字符串最长公共子序列的代码.可是无一例外都是处理英文字符串,当处理汉字字符串时.常常会出现乱码或者不对的情况. 我对代码进行了改动.使用wchar_t类型存储字 ...
- [LeetCode] 300. 最长上升子序列 ☆☆☆(动态规划 二分)
https://leetcode-cn.com/problems/longest-increasing-subsequence/solution/dong-tai-gui-hua-she-ji-fan ...
- BZOJ3173:[TJOI2013]最长上升子序列 & HDU3564:Another LIS——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=3173 http://acm.hdu.edu.cn/showproblem.php?pid=3564 ...
随机推荐
- 利用函数计算构建微信小程序的Server端
10分钟上线 - 利用函数计算构建微信小程序的Server端-博客-云栖社区-阿里云 https://yq.aliyun.com/articles/435430 函数计算 读写 oss import ...
- the “identity” of an object
2. Built-in Functions — Python 3.6.5 documentation https://docs.python.org/3.6/library/functions.htm ...
- HTTP要点概述:十,内容协商
一,内容协商(Content Negotiation) 同一个Web网站可能存在很多份相同内容的页面,比如英文版和中文版的Web页面,它们内容上相同,但是使用语言不同.比如大家进入英文版的google ...
- Vijos 1523 贪吃的九头龙 【树形DP】
贪吃的九头龙 背景 安徽省芜湖市第二十七中学测试题 NOI 2002 贪吃的九头龙(dragon) Description:OfficialData:OfficialProgram:Converted ...
- git ignore的一些技巧
当想要ignore的部分已经纳入版本控制的时候,可以使用 git rm --cache -rf cache 来强制ignore
- SIM卡APDU指令【转】
本文转载自:http://blog.csdn.net/hlx156/article/details/54136756 一个APDU可以是一个命令,也可以是命令的响应. 命令APDU的一般格式: CLA ...
- bzoj5311: 贞鱼
还是年轻啊算的时候少乘一个4000被卡二分上界了...%%%%bright教我超级快速读D飞bzoj垃圾卡常数据 我们容易写出这样的DP方程:f[i][j]=f[k][j-1]+val(k+1,j) ...
- ZOJ3962 2017 E.Seven Segment Display
数码管从某个状态顺序转移N个状态 计算总共有多少个数码管被点亮 N<=10^9 观察数码管的变化规律,有明显的周期和重复,利用这个性质,计算相对于初始状态,某一位上的某个状态重复了多少次,就可以 ...
- 前端性能调优Gzip Filter
转自:https://blog.csdn.net/zxk15982106569/article/details/18922613 客户端向web服务器端发出了请求后,通常情况下服务器端会将页面文件和其 ...
- 昆石VOS3000_2.1.3.2完整安装包及安装脚本
安装包下载地址:http://www.51voip.org/post/55.html 安装教程: 上传安装包 核实 关闭selinux 是否关闭 /usr/sbin/sestatus -v cd /r ...