最长上升子序列(动态规划递推,LIS)
1759:最长上升子序列
题目:
- 总时间限制:
- 2000ms
- 内存限制:
- 65536kB
- 描述
- 一个数的序列bi,当b1 < b2 < ... < bS的时候,我们称这个序列是上升的。对于给定的一个序列(a1, a2, ..., aN),我们可以得到一些上升的子序列(ai1, ai2, ..., aiK),这里1 <= i1 < i2 < ... < iK <= N。比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8).
你的任务,就是对于给定的序列,求出最长上升子序列的长度。
- 输入
- 输入的第一行是序列的长度N (1 <= N <= 1000)。第二行给出序列中的N个整数,这些整数的取值范围都在0到10000。
- 输出
- 最长上升子序列的长度。
- 样例输入
-
7
1 7 3 5 9 4 8 - 样例输出
- 4
- 下面放一下ac代码
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const ll maxn=+;
ll f[maxn];//用来递推的数组
ll a[maxn];//存储输入数据 int main()
{
ll n;
cin>>n;
for(ll i=;i<=n;i++)
{
scanf("%lld",&a[i]);//输入数据
f[i]=;//顺便为f数组赋初值
/*
f数组的意义是以a[i]结尾的序列能拥有的最大长度
*/
} for(ll i=;i<=n;i++)//i=1时f[1]肯定等于1,所以从2开始
for(ll j=;j<=i-;j++)//j代表枚举f[i]前面的所有可能
{
if(a[i]>a[j])//如果可以加在它后面,记住这里的子序列是可以间断的
f[i]=max(f[i],f[j]+);
}
ll ans=f[];//为ans初定义
for(ll i=;i<=n;i++)//这里的意思是找出f[i=1~n]的最大值
if(f[i]>ans)
ans=f[i];
cout<<ans<<endl;
}
点击打开折叠代码
然后开始解释一下这道题
我们建立一个数组f[maxn],
f数组的意义是以a[i]结尾的序列能拥有的最大上升长度
毫无疑问f[1]始终=1,然后我们对其他f[i]也都赋初始值为1,因为,如果f[i]就只包括a[i]一个的话长度就是1呀
然后核心是状态转移方程
- if(a[i]>a[j])//如果可以加在它后面,记住这里的子序列是可以间断的
f[i]=max(f[i],f[j]+1); - 先说明j=1~i-1,因为a[i]只能拼接在它前面的序列嘛,所以j最大为i-1
- 解释一下这段代码:
- if(a[i]>a[j])就是说可以拼接,因为符合上升条件
- 然后f[i]=max(f[i],f[j]+1);这里这段语句可能会执行几次,所以有f[i]=max(f[i],....)这样的东西,就是新的自己和旧的自己比较的意思,我们平时用的a=a+1,也是这样,两个a不一样,a=a+1这个栗子是教练教我的,讲的真好
- 然后f[i]=max(f[i],f[j]+1)的意思就是在前面已经判断了可以拼接的基础上,如果加在前面的f[j]序列上更长的话就f[i]=f[j]+1(+1的意思是相对于前面的f[j]长度又多了一个,也就是多了a[i]),否则就f[i]=f[i]不变
推荐一道类似的题目:
最大子段和(洛谷P1115,动态规划递推)
最长上升子序列(动态规划递推,LIS)的更多相关文章
- 最大子段和(洛谷P1115,动态规划递推)
洛谷题目链接 题目赋值出来格式有问题,所以我就只放题目链接了 下面为ac代码 #include<bits/stdc++.h> #define ll long long using name ...
- 九度OJ 1533 最长上升子序列 -- 动态规划
题目地址:http://ac.jobdu.com/problem.php?pid=1533 题目描述: 给定一个整型数组, 求这个数组的最长严格递增子序列的长度. 譬如序列1 2 2 4 3 的最长严 ...
- 300. Longest Increasing Subsequence(LIS最长递增子序列 动态规划)
Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...
- 每日一题 LeetCode 491. 递增子序列 【递推】【递增子序列】【动态规划】
题目链接 https://leetcode-cn.com/problems/increasing-subsequences/ 题目说明 题解 主要方法:递推:动态规划 解释说明: 数据表示:观察数据范 ...
- 【ACM】最长公共子序列 - 动态规划
最长公共子序列 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 咱们就不拐弯抹角了,如题,需要你做的就是写一个程序,得出最长公共子序列.tip:最长公共子序列也称作最 ...
- bzoj 3173 [Tjoi2013]最长上升子序列 (treap模拟+lis)
[Tjoi2013]最长上升子序列 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2213 Solved: 1119[Submit][Status] ...
- C++求解汉字字符串的最长公共子序列 动态规划
近期,我在网上看了一些动态规划求字符串最长公共子序列的代码.可是无一例外都是处理英文字符串,当处理汉字字符串时.常常会出现乱码或者不对的情况. 我对代码进行了改动.使用wchar_t类型存储字 ...
- [LeetCode] 300. 最长上升子序列 ☆☆☆(动态规划 二分)
https://leetcode-cn.com/problems/longest-increasing-subsequence/solution/dong-tai-gui-hua-she-ji-fan ...
- BZOJ3173:[TJOI2013]最长上升子序列 & HDU3564:Another LIS——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=3173 http://acm.hdu.edu.cn/showproblem.php?pid=3564 ...
随机推荐
- RPC和微服务
1 什么是RPC 是remote procedure call的缩写. 2 什么是微服务 所谓的微服务就是说,把一个应用分解成一组小的服务,每个服务运行在自己的进程中.每个服务都可以单独部署,可以用自 ...
- Bootstrap 模态窗口源码分析
前言: bootstrap的 js插件的源码写的非常好,也算是编写jquery插件的模范写法,本来还想大篇详细的分析一下呢,唉,没时间啊,很早之前看过的源码了,现在贴在了博客上, 300来行的代码,其 ...
- bzoj2709: [Violet 1]迷宫花园
二分答案,spfa check就行了. gb题卡精度. #include<cstdio> #include<iostream> #include<cstring> ...
- YTU 2632: B2 友元光顾
2632: B2 友元光顾 时间限制: 1 Sec 内存限制: 128 MB 提交: 378 解决: 241 题目描述 定义一个平面上的点类Point,其中设置成员函数distance1求当前对象 ...
- Python基础第六天
一.内容 二.练习 练习1 题目:文件的增删改查 图示: 代码: import os def add(data): content = data[1] # 文件内容 file_name = data[ ...
- Unity ScriptObject
http://godstamps.blogspot.com/2012/02/unity-3d-scriptableobject-assetbundle.html http://ivanozanchet ...
- 栗染-Not enough physical memory is available to power on this virtual machine with its configured settings.
这是在打开虚拟机的时候报的错 解决办法:打开虚拟机的时候选择以管理员身份运行()目测可以 原文参考来自:http://blog.csdn.net/qq_35757415/article/details ...
- bzoj 1592: [Usaco2008 Feb]Making the Grade 路面修整【dp】
因为是单调不降或单调不升,所以所有的bi如果都是ai中出现过的一定不会变差 以递增为例,设f[i][j]为第j段选第i大的高度,预处理出s[i][j]表示选第i大的时,前j个 a与第i大的值的差的绝对 ...
- SpringBoot集成MybatisPlus解决Mapper文件修改后动态刷新的问题
很多人在使用SpringBoot集成Mybatis或者MybatisPlus的时候在查询复杂的情况下会写mapper文件,虽然说MyBatisPlus提供了常用的增删查改,但还是难以应付复杂的查询.关 ...
- [Usaco2018 Open]Milking Order
Description Farmer John的N头奶牛(1≤N≤10^5),仍然编号为1-N,正好闲得发慌.因此,她们发展了一个与Farmer John每天早上为她们挤牛奶的时候的排队顺序相关的复杂 ...