题意:给定 n,k,求 while(i <=n) k % i的和。

析:很明显是一个数论题,写几个样例你会发现规律,假设 p = k / i.那么k  mod i = k - p*i,如果 k / (i+1) 也是p,那么就能得到 :

k mod (i+1) = k - p*(i+1) = k mod i - p。所以我们就能得到一个等差数列 k mod (i+1) - k mod i = -p,首项是 p % i。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <ctime>
#include <cstdlib>
#define debug puts("+++++")
//#include <tr1/unordered_map>
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
//using namespace std :: tr1; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const LL LNF = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 1e6 + 5;
const LL mod = 1e9 + 7;
const int N = 1e6 + 5;
const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1};
const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1};
const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); }
inline int gcd(int a, int b){ return b == 0 ? a : gcd(b, a%b); }
inline int lcm(int a, int b){ return a * b / gcd(a, b); }
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline int Min(int a, int b){ return a < b ? a : b; }
inline int Max(int a, int b){ return a > b ? a : b; }
inline LL Min(LL a, LL b){ return a < b ? a : b; }
inline LL Max(LL a, LL b){ return a > b ? a : b; }
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
LL solve(int a, int d, int n){
return (LL)((LL)n*a - (LL)n*(n-1)/2*d);
} int main(){
while(scanf("%d %d", &n, &m) == 2){
int i = 1;
LL ans = 0;
while(i <= n){
int a = m % i;
int d = m / i;
int cnt = n - i + 1;
if(d > 0) cnt = Min(cnt, a/d+1);
ans += solve(a, d, cnt);
i += cnt;
}
cout << ans << endl;
}
return 0;
}

题意:给定n, k,求出∑ni=1(k mod i)

UVa 1363 Joseph's Problem (数论)的更多相关文章

  1. UVA 1363 Joseph's Problem 找规律+推导 给定n,k;求k%[1,n]的和。

    /** 题目:Joseph's Problem 链接:https://vjudge.net/problem/UVA-1363 题意:给定n,k;求k%[1,n]的和. 思路: 没想出来,看了lrj的想 ...

  2. UVa 1363 - Joseph's Problem(数论)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  3. UVA 1363 Joseph's Problem

    https://vjudge.net/problem/UVA-1363 n 题意:求 Σ  k%i i=1 除法分块 如果 k/i==k/(i+1)=p 那么 k%(i+1)=k-(i+1)*p= k ...

  4. UVA 11490 - Just Another Problem(数论)

    11490 - Just Another Problem option=com_onlinejudge&Itemid=8&page=show_problem&category= ...

  5. UVa 1363 (数论 数列求和) Joseph's Problem

    题意: 给出n, k,求 分析: 假设,则k mod (i+1) = k - (i+1)*p = k - i*p - p = k mod i - p 则对于某个区间,i∈[l, r],k/i的整数部分 ...

  6. UVa 101 The Blocks Problem Vector基本操作

    UVa 101 The Blocks Problem 一道纯模拟题 The Problem The problem is to parse a series of commands that inst ...

  7. 【暑假】[深入动态规划]UVa 1380 A Scheduling Problem

     UVa 1380 A Scheduling Problem 题目: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=41557 ...

  8. UVA - 524 Prime Ring Problem(dfs回溯法)

    UVA - 524 Prime Ring Problem Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & % ...

  9. UVA 305 Joseph (约瑟夫环 打表)

     Joseph  The Joseph's problem is notoriously known. For those who are not familiar with the original ...

随机推荐

  1. WordPress升级错误:class-wp-filesystem-direct.php on line 122

    错误描述:WordPress在后台进行版本升级时,出错,之后进入前台或者后台,都无法访问进入,错误信息如下:Warning: copy(/home/xxx/public_html/wordpress/ ...

  2. loj6173 Samjia和矩阵(后缀数组/后缀自动机)

    题目: https://loj.ac/problem/6173 分析: 考虑枚举宽度w,然后把宽度压位集中,将它们哈希 (这是w=2的时候) 然后可以写一下string=“ac#bc” 然后就是求这个 ...

  3. Java模拟斗地主(实现大小排序)

    import java.util.Arrays; import java.util.Collections; import java.util.HashMap; import java.util.Li ...

  4. grep使用正则表达式搜索IP地址

    递归搜索当前目录及其子目录.子目录的子目录……所包含文件是否包含IP地址 grep -r "[[:digit:]]\{1,3\}\.[[:digit:]]\{1,3\}\.[[:digit: ...

  5. C++:vector中的resize()函数 VS reserve()函数

    http://www.cnblogs.com/biyeymyhjob/archive/2013/05/11/3072893.html

  6. Windows环境下QWT安装及配置

    ** 1.QWT下载路径 **:https://sourceforge.net/projects/qwt/ 主要下载这三个文件:qwt-6.1.2.zip.qwt-6.1.2.pdf,qwt-6.1. ...

  7. linux之rsync远程数据同步备份

    rsync服务是一种高效的远程数据备份的工具,该服务的port号为873, 是Liunx下的一种非独立服务.由xinetd超级服务管理,取代监听873port. 长处: 1.rsync能够利用ssh和 ...

  8. Java设计模式-设计模式的六种原则

    所谓无招胜有招,练一门功夫分为内功和外功. 外功好比招式,就是所谓的23种设计模式.而内功呢,就是心法,那就是这6种法则.光会外功那是花拳绣腿,内功修为才是境地. 如此众多的设计模式,学完2遍.3遍可 ...

  9. 使用literal语法格式化字符串

    支持arm64之后,格式化字符串的时候会遇到一些问题,主要与NSInteger的定义有关: #if __LP64__ || (TARGET_OS_EMBEDDED && !TARGET ...

  10. 2016/2/24 css画三角形 border的上右下左的调整 以及内区域的无限变小 边界透明

    网页因为 CSS 而呈现千变万化的风格.这一看似简单的样式语言在使用中非常灵活,只要你发挥创意就能实现很多比人想象不到的效果.特别是随着 CSS3 的广泛使用,更多新奇的 CSS 作品涌现出来. 今天 ...