题意:给定 n,k,求 while(i <=n) k % i的和。

析:很明显是一个数论题,写几个样例你会发现规律,假设 p = k / i.那么k  mod i = k - p*i,如果 k / (i+1) 也是p,那么就能得到 :

k mod (i+1) = k - p*(i+1) = k mod i - p。所以我们就能得到一个等差数列 k mod (i+1) - k mod i = -p,首项是 p % i。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <ctime>
#include <cstdlib>
#define debug puts("+++++")
//#include <tr1/unordered_map>
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
//using namespace std :: tr1; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const LL LNF = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 1e6 + 5;
const LL mod = 1e9 + 7;
const int N = 1e6 + 5;
const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1};
const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1};
const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); }
inline int gcd(int a, int b){ return b == 0 ? a : gcd(b, a%b); }
inline int lcm(int a, int b){ return a * b / gcd(a, b); }
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline int Min(int a, int b){ return a < b ? a : b; }
inline int Max(int a, int b){ return a > b ? a : b; }
inline LL Min(LL a, LL b){ return a < b ? a : b; }
inline LL Max(LL a, LL b){ return a > b ? a : b; }
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
LL solve(int a, int d, int n){
return (LL)((LL)n*a - (LL)n*(n-1)/2*d);
} int main(){
while(scanf("%d %d", &n, &m) == 2){
int i = 1;
LL ans = 0;
while(i <= n){
int a = m % i;
int d = m / i;
int cnt = n - i + 1;
if(d > 0) cnt = Min(cnt, a/d+1);
ans += solve(a, d, cnt);
i += cnt;
}
cout << ans << endl;
}
return 0;
}

题意:给定n, k,求出∑ni=1(k mod i)

UVa 1363 Joseph's Problem (数论)的更多相关文章

  1. UVA 1363 Joseph's Problem 找规律+推导 给定n,k;求k%[1,n]的和。

    /** 题目:Joseph's Problem 链接:https://vjudge.net/problem/UVA-1363 题意:给定n,k;求k%[1,n]的和. 思路: 没想出来,看了lrj的想 ...

  2. UVa 1363 - Joseph's Problem(数论)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  3. UVA 1363 Joseph's Problem

    https://vjudge.net/problem/UVA-1363 n 题意:求 Σ  k%i i=1 除法分块 如果 k/i==k/(i+1)=p 那么 k%(i+1)=k-(i+1)*p= k ...

  4. UVA 11490 - Just Another Problem(数论)

    11490 - Just Another Problem option=com_onlinejudge&Itemid=8&page=show_problem&category= ...

  5. UVa 1363 (数论 数列求和) Joseph's Problem

    题意: 给出n, k,求 分析: 假设,则k mod (i+1) = k - (i+1)*p = k - i*p - p = k mod i - p 则对于某个区间,i∈[l, r],k/i的整数部分 ...

  6. UVa 101 The Blocks Problem Vector基本操作

    UVa 101 The Blocks Problem 一道纯模拟题 The Problem The problem is to parse a series of commands that inst ...

  7. 【暑假】[深入动态规划]UVa 1380 A Scheduling Problem

     UVa 1380 A Scheduling Problem 题目: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=41557 ...

  8. UVA - 524 Prime Ring Problem(dfs回溯法)

    UVA - 524 Prime Ring Problem Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & % ...

  9. UVA 305 Joseph (约瑟夫环 打表)

     Joseph  The Joseph's problem is notoriously known. For those who are not familiar with the original ...

随机推荐

  1. 利用PHP SOAP实现WEB SERVICE[转载]

    php有两个扩展可以实现web service,一个是NuSoap,一个是php 官方的soap扩展,由于soap是官方的,所以我们这里以soap来实现web service.由于默认是没有打开soa ...

  2. rabbitmq management Login Failed

    默认用户guest 只允许localhost登录. so... 我们自己建立用户 1. 用户管理 用户管理包括增加用户,删除用户,查看用户列表,修改用户密码. 相应的命令 (1) 新增一个用户 rab ...

  3. HDU1533 最小费用最大流

    Going Home Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  4. springboot整合mybatis,freemarker

    springboot 整合mybaits,,freemarker pom.xml文件 <?xml version="1.0" encoding="UTF-8&quo ...

  5. EF关联

    public CustomerMap() { this.ToTable("Customer"); this.HasKey(c => c.Id); this.Property( ...

  6. 异或巧用:Single Number

    异或巧用:Single Number 今天刷leetcode,碰到了到题Single Number.认为解答非常巧妙,故记之... 题目: Given an array of integers, ev ...

  7. 【HRS项目】Axure兴许问题解决---与SVN结合

    上一篇博客介绍了Axure的团队开发用法,http://blog.csdn.net/u013036274/article/details/50999139,可是再用的时候发现会出现这种问题,例如以下图 ...

  8. C++实现KMP模式匹配算法

    #include<iostream> #include<string> #include<vector> using namespace std; void Nex ...

  9. poj 2585 Window Pains 暴力枚举排列

    题意: 在4*4的格子中有9个窗体,窗体会覆盖它之下的窗体,问是否存在一个窗体放置的顺序使得最后的结果与输入同样. 分析: 在数据规模较小且不须要剪枝的情况下能够暴力(思路清晰代码简单),暴力一般分为 ...

  10. IO流(字节流复制)01

    package ioDemo; import java.io.*; /** * IO流(字节流复制) * Created by lcj on 2017/11/2. */ public class bu ...