首先化简,题目要求的是

\[G^{\sum_{i|n}C_{n}^{i}}\%p
\]

对于乘方形式快速幂就行了,因为p是质数,所以可以用欧拉定理

\[G^{\sum_{i|n}C_{n}^{i}\%\varphi(p)}
\]

\[G^{\sum_{i|n}C_{n}^{i}\%p-1}
\]

因为p-1不是质数,所以把它质因数分解为2,3,4679,35617,最后用中国剩余定理合并即可。

#include<iostream>
#include<cstdio>
using namespace std;
const int p=999911659,N=50005;
int g,n,m[5],fac[5][N],t[5]={2,3,4679,35617};
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
int ksm(long long a,int b,int p)
{
long long r=1ll;
while(b)
{
if(b&1)
r=r*a%p;
a=a*a%p;
b>>=1;
}
return r;
}
int C(int n,int m,int x)
{
if(n<m)
return 0;
return fac[x][n]*ksm(fac[x][n-m]*fac[x][m],t[x]-2,t[x])%t[x];
}
int lucas(int n,int m,int x)
{
return !m?1:C(n%t[x],m%t[x],x)*lucas(n/t[x],m/t[x],x)%t[x];
}
void exgcd(int a,int b,int &x,int &y)
{
if(b==0)
{
x=1,y=0;
return;
}
exgcd(b,a%b,y,x);
y-=a/b*x;
}
int wk()
{
int a,b,x,y;
a=t[0],b=m[0];
for(int i=1;i<4;i++)
{
exgcd(a,t[i],x,y);
x=(((m[i]-b)*x)%t[i]+t[i])%t[i];
b=b+a*x;
a=a*t[i];
}
return b;
}
int main()
{
for(int i=0;i<4;i++)
{
fac[i][0]=1;
for(int j=1;j<=t[i];j++)
fac[i][j]=fac[i][j-1]*j%t[i];
}
n=read(),g=read();
if(g==p)
{
puts("0");
return 0;
}
g%=p;
for(int i=1;i*i<=n;i++)
if(n%i==0)
{
int now=n/i;
for(int j=0;j<4;j++)
{
if(now!=i)
m[j]=(m[j]+lucas(n,i,j))%t[j];
m[j]=(m[j]+lucas(n,now,j))%t[j];
}
}
printf("%d\n",ksm(g,wk(),p));
return 0;
}

bzoj 1951: [Sdoi2010]古代猪文 【中国剩余定理+欧拉定理+组合数学+卢卡斯定理】的更多相关文章

  1. BZOJ 1951: [Sdoi2010]古代猪文 [Lucas定理 中国剩余定理]

    1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 2194  Solved: 919[Submit][Status] ...

  2. BZOJ 1951: [Sdoi2010]古代猪文( 数论 )

    显然答案是G^∑C(d,N)(d|N).O(N^0.5)枚举N的约数.取模的数999911659是质数, 考虑欧拉定理a^phi(p)=1(mod p)(a与p互质), 那么a^t mod p = a ...

  3. BZOJ 1951 [SDOI2010]古代猪文 (组合数学+欧拉降幂+中国剩余定理)

    题目大意:求$G^{\sum_{m|n} C_{n}^{m}}\;mod\;999911659\;$的值$(n,g<=10^{9})$ 并没有想到欧拉定理.. 999911659是一个质数,所以 ...

  4. bzoj 1951 [Sdoi2010]古代猪文(数论知识)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1951 [思路] 一道优(e)秀(xin)的数论题. 首先我们要求的是(G^sigma{ ...

  5. 【刷题】BZOJ 1951 [Sdoi2010]古代猪文

    Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久 ...

  6. bzoj 1951 [Sdoi2010]古代猪文 ——数学综合

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1951 数学综合题. 费马小定理得指数可以%999911658,又发现这个数可以质因数分解.所 ...

  7. BZOJ1951 [Sdoi2010]古代猪文 中国剩余定理 快速幂 数论

    原文链接http://www.cnblogs.com/zhouzhendong/p/8109156.html 题目传送门 - BZOJ1951 题意概括 求 GM mod 999911659 M=∑i ...

  8. bzoj 1951: [Sdoi2010]古代猪文

    #include<cstdio> #include<iostream> #include<cstring> #include<cmath> #defin ...

  9. BZOJ.1951.[SDOI2010]古代猪文(费马小定理 Lucas CRT)

    题目链接 \(Description\) 给定N,G,求\[G^{\sum_{k|N}C_n^k}\mod\ 999911659\] \(Solution\) 由费马小定理,可以先对次数化简,即求\( ...

随机推荐

  1. django学习之- Ajax

    提示:jquery要使用1版本,因为高版本已不兼容低版本的游览器.参考url:http://www.cnblogs.com/wupeiqi/articles/5703697.html原生ajax:Aj ...

  2. [MGR——Mysql的组复制之多主模式 ] 详细搭建部署过程

    组复制可以在两种模式下运行. 1.在单主模式下,组复制具有自动选主功能,每次只有一个 server成员接受更新.2.在多主模式下,所有的 server 成员都可以同时接受更新.   组复制与异步主从复 ...

  3. CSS布局之BFC和IFC

    本文为原创,转载请注明出处: cnzt       文章:cnzt-p http://www.cnblogs.com/zt-blog/p/6708358.html <这是一篇css2-3的布局规 ...

  4. Meteor表单

    在本教程中,我们将告诉你如何使用 Meteor 的表单. 文本输入 首先,我们将创建一个 form 元素中文本输入字段和提交按钮. meteorApp/import/ui/meteorApp.html ...

  5. StringUtil内部方法差异

    StringUtil 的 isBlank.isEmply.isNotEmpty.isNotBlank 区别   String.trim()方法: trim()是去掉首尾空格   append(Stri ...

  6. POJ 1436 Horizontally Visible Segments(线段树)

    POJ 1436 Horizontally Visible Segments 题目链接 线段树处理染色问题,把线段排序.从左往右扫描处理出每一个线段能看到的右边的线段,然后利用bitset维护枚举两个 ...

  7. redux-saga 异步流

    前言 React的作用View层次的前端框架,自然少不了很多中间件(Redux Middleware)做数据处理, 而redux-saga就是其中之一,目前这个中间件在网上的资料还是比较少,估计应用的 ...

  8. 【转】PLSQL_标准删除的方式Delete/Drop/Truncate区别和比较

  9. 项目期复习总结1:背景图合并,hack,浏览器内核前缀,伪类after before

    文件夹: 1.背景图合并和CSS Spirit 2.PS基本快捷键 3.hack技术基本书写,为什么不用? 4.内核前缀 5.伪类afterbefore 1.背景图合并和CSS Spirit 背景图合 ...

  10. js和jquery实现回到顶层

    js <!DOCTYPE html> <html> <head> <title>返回顶部</title> <style> bod ...