传送门

把这个图给黑白染色然后建二分图,如果有完备匹配那么就gg,否则放在所有的非匹配点都可以

简单来说的话就是放在非匹配点,那么对手的下一步必定移到一个匹配点,然后自己可以把它移到这个匹配点所匹配的另一个点。这样的话先手总能比后手多走一步

//minamoto
#include<bits/stdc++.h>
#define R register
#define inf 0x3f3f3f3f
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
#define gg(u) for(int &i=cur[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
inline int min(R int x,R int y){return x<y?x:y;}
using namespace std;
const int N=1e4+5,M=1e5+5;
const int dx[]={1,0,-1,0},dy[]={0,-1,0,1};
struct eg{int v,nx,w;}e[M];int head[N],tot=1;
inline void add(R int u,R int v,R int w){
e[++tot]={v,head[u],w},head[u]=tot;
e[++tot]={u,head[v],0},head[v]=tot;
}
int q[N],cur[N],dep[N],vis[N],bl[N],ok[N],id[105][105],b[105][105];
int n,m,S,T,cnt;char s[105];bool flag=0;
bool bfs(){
fp(i,S,T)cur[i]=head[i],dep[i]=-1;
int h,t;q[h=t=1]=S,dep[S]=0;
while(h<=t){
int u=q[h++];go(u)if(dep[v]<0&&e[i].w){
dep[v]=dep[u]+1,q[++t]=v;
if(v==T)return true;
}
}return false;
}
int dfs(int u,int lim){
if(u==T||!lim)return lim;
int flow=0,f;
gg(u)if(dep[v]==dep[u]+1&&(f=dfs(v,min(lim,e[i].w)))){
flow+=f,lim-=f,e[i].w-=f,e[i^1].w+=f;
if(!lim)break;
}return flow;
}
inline int dinic(){int flow=0;while(bfs())flow+=dfs(S,inf);return flow;}
void Dfs(int u,int lim){
if(vis[u])return;vis[u]=1;
if(bl[u]==lim)ok[u]=1,flag=true;
go(u)if(e[i].w==lim)Dfs(v,lim);
}
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d%d",&n,&m),S=0,T=n*m+1;
fp(i,1,n){
scanf("%s",s+1);
fp(j,1,m)id[i][j]=++cnt,b[i][j]=s[j]=='#';
}fp(i,1,n)fp(j,1,m)if(!b[i][j]&&((i+j)&1))fp(k,0,3){
int xx=i+dx[k],yy=j+dy[k];bl[id[i][j]]=1;
if(xx>=1&&xx<=n&&yy>=1&&yy<=m&&!b[xx][yy])add(id[i][j],id[xx][yy],1);
}fp(i,1,n)fp(j,1,m)if(!b[i][j]&&((i+j)&1))add(S,id[i][j],1);else if(!b[i][j])add(id[i][j],T,1);
dinic();Dfs(S,1),memset(vis,0,sizeof(vis)),Dfs(T,0);
if(!flag)return puts("LOSE"),0;
puts("WIN");fp(i,1,n)fp(j,1,m)if(ok[id[i][j]])printf("%d %d\n",i,j);
return 0;
}

P4055 [JSOI2009]游戏的更多相关文章

  1. BZOJ1443: [JSOI2009]游戏Game

    如果没有不能走的格子的话,和BZOJ2463一样,直接判断是否能二分图匹配 现在有了一些不能走的格子 黑白染色后求出最大匹配 如果是完备匹配,则无论如何后手都能转移到1*2的另一端,故先手必输 否则的 ...

  2. JSOI2009 游戏

    1443: [JSOI2009]游戏Game Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 557  Solved: 251[Submit][Stat ...

  3. BZOJ:1443: [JSOI2009]游戏Game

    原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1443 反正不看题解我是完全想不出系列…… 先把棋盘黑白染色,也就是同一对角线上颜色相同,使 ...

  4. [JSOI2009]游戏Game

    Description Input 输入数据首先输入两个整数N,M,表示了迷宫的边长. 接下来N行,每行M个字符,描述了迷宫. Output 若小AA能够赢得游戏,则输出一行"WIN&quo ...

  5. BZOJ1443 [JSOI2009]游戏Game 【博弈论 + 二分图匹配】

    题目链接 BZOJ1443 题解 既然是网格图,便可以二分染色 二分染色后发现,游戏路径是黑白交错的 让人想到匹配时的增广路 后手要赢[指移动的后手],必须在一个与起点同色的地方终止 容易想到完全匹配 ...

  6. BZOJ:[JSOI2009]游戏Game【二分图匹配乱搞】

    题目大意:n*m的棋盘,其中有些区域是禁区,两个人在棋盘上进行博弈,后手选择棋子的初始位置,然后先后手轮流将棋子往上下左右移动,走过的区域不能再走,问能否有一个位置使得后手必胜 Input 输入数据首 ...

  7. 【BZOJ1443】[JSOI2009]游戏Game(二分图+博弈)

    BZOJ 题意: 给出一个\(n*m\)的网格,其中有一些障碍点. 现在两个人玩游戏,首先先手选定一个点,然后从后手开始轮流移动,不能移动者即输掉这次游戏. 规定不能移动到那些之前已经到过的格子上. ...

  8. 【BZOJ】1443: [JSOI2009]游戏Game

    [算法]博弈论+二分图匹配(最大流) [题解]方格图黑白染色得到二分图, 二分图博弈:当起点不属于某个最大匹配时,后手必胜. 问题转化为那些点不属于某个最大匹配. 先找到一个最大匹配,非匹配点加入答案 ...

  9. BZOJ.1443.[JSOI2009]游戏Game(二分图博弈 匈牙利)

    题目链接 \(Description\) 一个\(N*M\)的有障碍的棋盘,先手放置棋子后,从后手开始轮流移动棋子,不能走重复的位置,不能移动的输.求在哪些位置放棋子是先手必胜的. \(Solutio ...

随机推荐

  1. python学习之 - configparser模块

    configparser模块功能:用于生成和修改常见配置文件.基本常用方法如下: read(filename):直接读取配置文件write(filename):将修改后的配置文件写入文件中.defau ...

  2. 将Sublime Text 2搭建成一个好用的IDE(转)

    原文地址 将Sublime Text 2搭建成一个好用的IDE 说起编辑器,可能大部分人要推荐的是Vim和Emacs,本人用过Vim,功能确实强大,但是不是很习惯,之前一直有朋友推荐SUblime T ...

  3. Highways POJ 2485【Prim】

    Description The island nation of Flatopia is perfectly flat. Unfortunately, Flatopia has no public h ...

  4. Win7 丢失MSVCR110.DLL的解决办法

    1 从下面的网站下载dll文件 http://www.ddooo.com/softdown/27034.htm   2 把该文件放到C:\Windows\SysWOW64目录下(64位系统)或者C:\ ...

  5. SDUTOJ 2475 Power Strings

    <pre class="cpp" name="code">#include<iostream> #include<stdio.h& ...

  6. wpf 导出Excel Wpf Button 样式 wpf简单进度条 List泛型集合对象排序 C#集合

    wpf 导出Excel   1 private void Button_Click_1(object sender, RoutedEventArgs e) 2 { 3 4 ExportDataGrid ...

  7. jquery验证后ajax提交,返回消息怎样统一显示的问题

    /* jquery验证后ajax提交.返回消息怎样跟jquery验证体系统一显示的问题,网上查了非常多资料.都没有找到明白的答案,通过数小时的尝试,最终攻克了,现举一个简单的样例,给须要的人參考參考吧 ...

  8. Pierce振荡器设计

    一.Pierce振荡器电路 Inv:内部反相器,作用等同于放大器: Q:石英晶体或陶瓷晶振: RF:内部反馈电阻(使反相器工作在线性区): RExt:外部限流电阻(防止石英晶体被过分驱动): CL1. ...

  9. 1 Angular 2 简介与 AngularJS 1.x 历史对比

    Angular 2 是一款JavaScript的开源框架,用于协助单一页面应用程序运行.Angular 2 是 AngularJS 1.x 的升级版本,应Web的进化和前端开发的变革还有从Angula ...

  10. 微博试水卖车社交电商怎样令4S“颤抖”?

        微博对社交电商的探索一直在深入,年初.微博上线了"支付"产品.从而使社交产业链实现了闭环,随后,微博又尝试售卖多种商品,不断扩大移动电商的试水范围,近期微博大规模汽车销售收 ...