传送门

stdcall大佬好强

期望的姿势不是很高……据大佬说期望有一个线性性质,也就是说可以把每一张牌的期望伤害算出来然后再加起来就是总的期望伤害

因为每一张牌只能用一次,我们设$dp[i]$表示第$i$张牌被使用的概率,$d[i]$表示这一张牌的伤害,那么总伤害就是$$\sum_{i=1}^n dp[i]*d[i]$$

首先,第一张牌的概率是很好计算的,也就是$dp[1]=1-(1-p[i])^r$,就是说这张牌一直憋着不出

然后考虑之后的牌的概率怎么计算。首先牌选的顺序对答案是没有影响的,所以我们设$f[i][j]$表示$r$轮里在前$i$张牌中选了$j$张的概率。如果前面的$i-1$张牌里选了$j$张,那么有$j$轮不会考虑到第$i$张牌,有$r-j$轮会考虑到。那么我们枚举$j$,于是$$dp[i]=\sum_{j=1}^r f[i-1][j]*(1-(1-p[i])^{r-j})$$

然后只要我们能把$f[i][j]$求出来就好了。考虑如何转移,有两种情况,一种是第$i$张牌最终没有被选,那么$f[i][j]$由$f[i-1][j]$转移而来,不选的概率是$(1-p[i])^{r-j}$,即$$f[i][j]+=f[i-1][j]*(1-p[i])^{r-j}$$

还有一种情况是第$i$张牌被选了,那么是由$f[i-1][j-1]$转移过来,这张牌被选的概率是$(1-(1-p[i])^{r-j+1})$,即$$f[i][j]+=f[i-1][j-1]*(1-(1-p[i])^{r-j+1})$$

然后只要转移就好了

然后代码里预处理了$1-p[i]$的幂

 //minamoto
#include<bits/stdc++.h>
using namespace std;
const int N=;
int n,r,d[N];double p[N],dp[N],pow1p[N][N];
void init(){
for(int i=;i<=n;++i){
pow1p[i][]=;
for(int j=;j<=r;++j)
pow1p[i][j]=pow1p[i][j-]*(-p[i]);
}
}
double f[N][N];
void solve(){
memset(f,,sizeof(f)),memset(dp,,sizeof(dp));
f[][]=pow1p[][r],f[][]=dp[]=-f[][];
for(int i=;i<=n;++i)
for(int j=;j<=r;++j){
dp[i]+=f[i-][j]*(-pow1p[i][r-j]);
f[i][j]+=f[i-][j]*pow1p[i][r-j];
if(j) f[i][j]+=f[i-][j-]*(-pow1p[i][r-j+]);
}
double res=;
for(int i=;i<=n;++i) res+=dp[i]*d[i];
printf("%.10lf\n",res);
}
int main(){
// freopen("testdata.in","r",stdin);
int T;scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&r);
for(int i=;i<=n;++i) scanf("%lf%d",&p[i],&d[i]);
init(),solve();
}
return ;
}

洛谷P3239 [HNOI2015]亚瑟王(期望dp)的更多相关文章

  1. 洛谷 P3239 [HNOI2015]亚瑟王(期望dp)

    题面 luogu 题解 一道复杂的期望\(dp\) 思路来源:__stdcall 容易想到,只要把每张牌打出的概率算出来就可以求出\(ans\) 设\(fp[i]\)表示把第\(i\)张牌打出来的概率 ...

  2. [洛谷 P3239] [HNOI2015]亚瑟王

    [HNOI2015]亚瑟王 题目描述 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑.他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知, ...

  3. P3239 [HNOI2015]亚瑟王 期望dp

    这个题一看就是期望dp,但是我有个问题,一个事件的期望等于他所有事件可能行乘权值的和吗...为什么我有天考试的时候就不对呢...求大佬解释一下. 至于这道题,f[i][j]代表前i个有j个发动技能,这 ...

  4. 洛谷P3239 [HNOI2015]亚瑟王

    题目描述 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑.他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟王是一个看脸的游戏,技能 ...

  5. P3239 [HNOI2015]亚瑟王 期望 dp

    LINK:亚瑟王 Saber!Excalibur! 比较难的期望dp. 可以发现如果暴力枚举所有的局面复杂度很高 . 转换的思路则是 期望的线性性. 求出每张牌的期望累加即可. 考虑每张牌的期望=这张 ...

  6. 洛谷 P3239 [HNOI2015]亚瑟王(期望+dp)

    题面传送门 感觉是道挺好的题,可惜当时没写题解来着的? 根据期望的线性公式,我们求出每个卡牌被发动的概率 \(q_i\),然后 \[ans=\sum\limits_{i=1}^np_id_i \] 于 ...

  7. P3239 [HNOI2015]亚瑟王——概率DP

    题面:亚瑟王 最近考试考期望很自闭啊,没做过这种类型的题,只能现在练一练: 所谓期望,就是状态乘上自己的概率:对于这道题来说,我们要求的是每张牌的伤害乘上打出的概率的和: 当然不是直接乘,因为给的是每 ...

  8. BZOJ4008: [HNOI2015]亚瑟王(期望dp)

    Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 1952  Solved: 1159[Submit][Status] ...

  9. [HNOI2015]亚瑟王(期望+DP)

    题解 利用期望的线性性,可以把问题转化为求每一个卡牌造成期望的期望值. 然后我们就需要知道每一个卡牌发动技能的概率. 因为当某一张卡牌发动技能时这一轮会结束,这就很难直接计算了. 我们使用DP 设dp ...

随机推荐

  1. 高清(200万像素)多灯红外防水枪型网络摄像机 DH-IPC-HFW5200-IRA

    DH-IPC-HFW5200-IRA-0722A http://download.dahuatech.com/instruction_download.php?classOne=3907&cl ...

  2. Shell 脚本小试牛刀(5) -- 超便捷脚本之高速ssh 登录其它主机

    假设你也是以Linux 为工作环境的童鞋,那么此文真是捷报!由于我的学习/工作中(特别是近期玩耍树莓派)常常会使用到ssh 登录其它主机,而每次使用ssh 登录都须要输入老长一大串让我非常烦.所以我写 ...

  3. 学习Centos 7的笔记

    Step-1 yum install epel-release && yum clean all && yum update –y &&  yum -y ...

  4. 【原创】PHP扩展开发入门

    PHP扩展开发入门 作者:wf (360电商技术组) 在我们编写自己的第一个php扩展之前,先了解一下php的总体架构和执行机制. php的架构如图1所看到的. 当中一个重要的就是SAPI(serve ...

  5. Tomcat-公布WEB应用

    1.定义Context 进入管理WEB应用的URL是http://localhost:8080/manager/html. username与password的设置:打开tomcat安装文件夹中的co ...

  6. Linux(Ubuntu14.04)下Google Chrome / Chromium标题栏乱码问题

    注:我使用的Linux发行版是Ubuntu 14.04,不同Linux发行版可能会有不同. 最近在使用Chromium的时候tab的标题栏中文显示乱码,在地址栏输入中文是同样时乱码,就像下图: 看起来 ...

  7. for循环console输出结果的问题

    我想定时打印出一串数字,写好了如下代码 for (var i = 0; i < 5; i++) {   setTimeout(function () {     console.log(i); ...

  8. sublime text 3 乱码

    sublime text 是一款很好用的文字编辑软件,可谓是程序员必备,但是最近发现在mac端使用的时候,中文乱码, 网上一些解决方案,抄袭严重,没有解决实际问题,所以记录下自己解决问题的过程. 1. ...

  9. 查看和改动MySQL数据库表存储引擎

            要做一名合格的程序猿,除了把代码写的美丽外,熟知数据库方面的知识也是不可或缺的.以下总结一下怎样查看和改动MySQL数据库表存储引擎:        1.查看数据库所能支持的存储引擎: ...

  10. 导入别人的Android项目,提示 /Libs/gen already exists but is not a source folder. Convert to a source folder or rename it

    解决方法: 遇到这个问题的解决方法: 1. 右键点击工程,选择 "Properties" 2. 选择左边的 "Java Build Path" 3. 打开 &q ...