洛谷 P1045 麦森数
题目描述
形如2^{P}-1的素数称为麦森数,这时P一定也是个素数。但反过来不一定,即如果P是个素数,2^{P}-1不一定也是素数。到1998年底,人们已找到了37个麦森数。最大的一个是P=3021377,它有909526位。麦森数有许多重要应用,它与完全数密切相关。
任务:从文件中输入P(1000<P<3100000),计算2^{P}-1的位数和最后500位数字(用十进制高精度数表示)
输入输出格式
输入格式:
文件中只包含一个整数P(1000<P<3100000)
输出格式:
第一行:十进制高精度数2^{P}-1的位数。
第2-11行:十进制高精度数2^{P}-1的最后500位数字。(每行输出50位,共输出10行,不足500位时高位补0)
不必验证2^{P}-1与P是否为素数。
输入输出样例
输入样例#1:
1279
输出样例#1:
386
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000104079321946643990819252403273640855
38615262247266704805319112350403608059673360298012
23944173232418484242161395428100779138356624832346
49081399066056773207629241295093892203457731833496
61583550472959420547689811211693677147548478866962
50138443826029173234888531116082853841658502825560
46662248318909188018470682222031405210266984354887
32958028878050869736186900714720710555703168729087
解题思路:
本题正确解法为高精度加快速幂,怎样求位数呢,公式:log10(2) * p + 1。再想如何求五百位,如果暴力一次次乘的话,会TLE,那么我们想到了快速幂,再加上高精度就AC了,需要注意的是题目只让求后五百位,所以我们每次只保存后五百位就可以了,因为前面无论是多少都不影响答案。
AC代码:
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
int p,f[],res[],sav[];
void rr1() {
memset(sav,,sizeof(sav));
for(int i = ;i <= ; i++)
for(int j = ;j <= ; j++)
sav[i+j-] += res[i] * f[j];//每一位都相乘,但是暂时不考虑进位
for(int i = ;i <= ; i++) {//进位
sav[i+] += sav[i] / ;
sav[i] %= ;
}
memcpy(res,sav,sizeof(res));//将sav赋值给res
}
void rr2() {
memset(sav,,sizeof(sav));
for(int i = ;i <= ; i++)
for(int j = ;j <= ; j++)
sav[i+j-] += f[i] * f[j];//每一位都相乘,但是暂时不考虑进位
for(int i = ;i <= ; i++) {//进位
sav[i+] += sav[i] / ;
sav[i] %= ;
}
memcpy(f,sav,sizeof(f));//将sav赋值给f
}
int main() {
scanf("%d",&p);
printf("%d\n",(int)(log10() * p + ));
res[] = ;
f[] = ;//高精度赋初值
while(p != ) {//快速幂过程
if(p % == ) rr1();
p /= ;
rr2();
}
res[] -= ;
for(int i = ;i >= ; i--)
if(i != && i % == ) printf("\n%d",res[i]);//50位就换行
else printf("%d",res[i]);
return ;
}
//NOIP普及 2003 T4
洛谷 P1045 麦森数的更多相关文章
- 洛谷P1045 麦森数
题目描述 形如2^{P}-12 P −1的素数称为麦森数,这时PP一定也是个素数.但反过来不一定,即如果PP是个素数,2^{P}-12 P −1不一定也是素数.到1998年底,人们已找 ...
- NOIP2003 普及组 洛谷P1045 麦森数 (快速幂+高精度)
有两个问题:求位数和求后500位的数. 求位数:最后减去1对答案的位数是不影响的,就是求2p的位数,直接有公式log10(2)*p+1; 求后500位的数:容易想到快速幂和高精度: 1 #includ ...
- 洛谷 P1045 麦森数 (快速幂+高精度+算位数骚操作)
这道题太精彩了! 我一开始想直接一波暴力算,然后叫上去只有50分,50分超时 然后我改成万位制提高运算效率,还是只有50分 然后我丧心病狂开long long用10的10次方作为一位,也就是100亿进 ...
- P1045麦森数
P1045麦森数 #include<iostream> #include <cmath> #include <cstring> const int maxn = 1 ...
- 洛谷试炼场-简单数学问题-P1045 麦森数-高精度快速幂
洛谷试炼场-简单数学问题 B--P1045 麦森数 Description 形如2^P−1的素数称为麦森数,这时P一定也是个素数.但反过来不一定,即如果PP是个素数,2^P-1 不一定也是素数.到19 ...
- 【题解】[P1045] 麦森数
题目 题目描述 形如2^P-1的素数称为麦森数,这时P一定也是个素数.但反过来不一定,即如果P是个素数,2^P-1 不一定也是素数.到1998年底,人们已找到了37个麦森数.最大的一个是P=30213 ...
- P1045 麦森数
别问我为什么要写水题 #include <iostream> #include <cstdio> #include <cstring> #include <a ...
- 【03NOIP普及组】麦森数(信息学奥赛一本通 1925)(洛谷 1045)
[题目描述] 形如2P-1的素数称为麦森数,这时P一定也是个素数.但反过来不一定,即如果P是个素数,2P-1不一定也是素数.到1998年底,人们已找到了37个麦森数.最大的一个是P=3021377,它 ...
- P1045 [NOIP2003 普及组] 麦森数
题目描述 形如2^P−1的素数称为麦森数,这时P一定也是个素数.但反过来不一定,即如果P是个素数,2^P−1不一定也是素数. 到1998年底,人们已找到了37个麦森数.最大的一个是P=3021377, ...
随机推荐
- POJ 1330 (LCA)
http://poj.org/problem?id=1330 题意:给出一个图,求两个点的最近公共祖先. sl :水题,贴个模板试试代码.本来是再敲HDU4757的中间发现要用LCA, 操蛋只好用这 ...
- Codeforces 621E Wet Shark and Block【dp + 矩阵快速幂】
题意: 有b个blocks,每个blocks都有n个相同的0~9的数字,如果从第一个block选1,从第二个block选2,那么就构成12,问对于给定的n,b有多少种构成方案使最后模x的余数为k. 分 ...
- Linux NFS服务器的安装与配置(转载)
一.NFS服务简介 NFS 是Network File System的缩写,即网络文件系统.一种使用于分散式文件系统的协定,由Sun公司开发,于1984年向外公布.功能是通过网络让不同的机器.不同的操 ...
- commons-lang常用工具类StringEscapeUtils
原文:https://my.oschina.net/mousai/blog/88832 在apache commons-lang(2.3以上版本)中为我们提供了一个方便做转义的工具类,主要是为了防止s ...
- 数学之路-分布式计算-storm(3)
.安装zookeeper 本博客全部内容是原创.假设转载请注明来源 http://blog.csdn.net/myhaspl/ myhaspl@aaayun:~/jzmq-master$cd .. m ...
- POJ3977 Subset 折半枚举
题目大意是给定N个数的集合,从这个集合中找到一个非空子集,使得该子集元素和的绝对值最小.假设有多个答案,输出元素个数最少的那个. N最多为35,假设直接枚举显然是不行的. 可是假设我们将这些数分成两半 ...
- iOS 基于 MVC 的项目重构总结
关于MVC的争论 关于MVC的争论已经有非常多,对此我的观点是:对于iOS开发中的绝大部分场景来说,MVC本身是没有问题的,你觉得的MVC的问题,一定是你自己理解的问题(资深架构师请自己主动忽略本文) ...
- web面试集合
在JavaScript中,添加到页面上的事件处理程序数量将直接关系到页面的整体运行性能.导致这一问题的原因是多方面的.首先,每个函数都是对象,都会占用内存:内存中的对象越多,性能就越差.其次,必须事先 ...
- openstack (1)----- NTP 时间同步服务
一.标准时间 1.地球分为东西十二个区域,共计24个时区 2.格林威治作为全球标准时间即(GMT时间),东时区以格林威治时区进行加,而西时区则进行减 3.地球的轨道并非正圆,在加上自传速度逐年递减,因 ...
- 免安装版TOMCAT配置及问题解决方法
前言 本文将介绍下面几点内容: 1.Tomcat的配置过程 2.启动startup过程中遇到的问题的解决 3.假设遇到本文中没有提到的问题怎样解决 配置 计算机右击->属性->高级系统设置 ...