Description

The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6. (a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem: Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.

Input

The first line of input is an integer T(T<=100) representing the number of test cases. The following T lines each contains two numbers N and M (2<=N<=, 1<=M<=N), representing a test case.

Output

For each test case,output the answer on a single line.

Sample Input

3
1 1
10 2
10000 72

Sample Output

1
6
260
解题思路:∵GCD(X,N)>=M,X∈[1,N],∴GCD(X,N)一定是N的约数。假设我们已经知道N的一个约数为P(P>=M),则问题转换成在[1,N]内有多少个数X,满足GCD(X,N)=P(P假设是一个已知值),接下来就是枚举每个P(P>=M),累加每个P对应X的个数。但是对于每个不小于M的N的约数P去计算满足GCD(X,N)>=M的X的个数的情况可能比较复杂,需要考虑的情况比较多,简单的想法是:在[1,N]内用O(NlogN)的时间复杂度判断一下GCD(X,N)是否不小于M,但是题目中N最大为10^10,这肯定是超时的了。因此进一步推导:∵GCD(X,N)=P,∴GCD(X/P,N/P)=1(很明显X/P与N/P互质),又∵X<=N,∴X/P<=N/P,而问题是求X的个数,结合欧拉函数的定义可知即求不大于N/P且与其互质的数X/P的个数,即求ϕ(N/P)。对于N的每个约数P,我们只需从1枚举到根号N,因为N/P可得N的另一个约数(相当于枚举了N的所有约数),这样时间复杂度就大大降低了。
AC代码:
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <map>
#include <vector>
#include <set>
using namespace std;
typedef long long LL;
const int maxn = 1e6+;
const LL mod = ;
int T; LL n, m, ans;
LL get_Euler(LL x){
LL res = x; ///初始值
for(LL i = 2LL; i * i <= x; ++i) {
if(x % i == ) {
res = res / i * (i - ); ///先除后乘,避免数据过大
while(x % i == ) x /= i;
}
}
if(x > 1LL) res = res / x * (x - ); ///若x大于1,则剩下的x必为素因子
return res;
} int main(){
while(cin >> T) {
while(T--) {
cin >> n >> m; ans = 0LL;
for(LL i = 1LL; i * i <= n; ++i) {
if(n % i) continue; ///跳过不是n的约数
if(i >= m && i * i != n) ans += get_Euler(n / i); ///约数i不小于m,累加phi[n/i],如果i*i==n,只算一次即可
if(n / i >= m) ans += get_Euler(i); ///另一个约数n/i不小于m,累加phi[n/(n/i)]=phi[i]
}
cout << ans << endl;
}
}
return ;
}
												

题解报告:hdu 2588 GCD(欧拉函数)的更多相关文章

  1. HDU 2588 GCD (欧拉函数)

    GCD Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Status De ...

  2. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  3. HDU 1695 GCD 欧拉函数+容斥定理

    输入a b c d k求有多少对x y 使得x在a-b区间 y在c-d区间 gcd(x, y) = k 此外a和c一定是1 由于gcd(x, y) == k 将b和d都除以k 题目转化为1到b/k 和 ...

  4. HDU 1695 GCD (欧拉函数,容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  5. hdu 1695 GCD (欧拉函数+容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  6. hdu 1695 GCD 欧拉函数 + 容斥

    http://acm.hdu.edu.cn/showproblem.php?pid=1695 要求[L1, R1]和[L2, R2]中GCD是K的个数.那么只需要求[L1, R1 / K]  和 [L ...

  7. HDU 1695 GCD 欧拉函数+容斥原理+质因数分解

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:在[a,b]中的x,在[c,d]中的y,求x与y的最大公约数为k的组合有多少.(a=1, a ...

  8. [题解](gcd/欧拉函数)luogu_P2568_GCD

    求gcd(x,y)=p等价于求gcd(x/p,y/p)=1,转化为了n/p内互质的个数 所以欧拉函数,因为有序所以乘2,再特判一下只有在1,1情况下才会重复计算,所以每次都减一 数组开小一时爽,提交w ...

  9. hdu2588 gcd 欧拉函数

    GCD Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  10. Problem I. Count - HDU - 6434(欧拉函数)

    题意 给一个\(n\),计算 \[\sum_{i=1}^{n}\sum_{j=1}^{i-1}[gcd(i + j, i - j) = 1]\] 题解 令\(a = i - j\) 要求 \[\sum ...

随机推荐

  1. [K/3Cloud] 单据转换插件执行顺序

    1.下推事件及顺序 //初始化变量 OnInitVariable(InitVariableEventArgs e) //解析字段映射关系,并构建查询参数.这里可以加入你想要的额外的字段 OnQuery ...

  2. Linux下汇编语言学习笔记64 ---

    这是17年暑假学习Linux汇编语言的笔记记录,参考书目为清华大学出版社 Jeff Duntemann著 梁晓辉译<汇编语言基于Linux环境>的书,喜欢看原版书的同学可以看<Ass ...

  3. JVM(四):深入分析Java字节码-下

    JVM(四):深入分析Java字节码-下 在上文中,我们讲解了 Class 文件中的文件标识,常量池等内容.在本文中,我们就详细说一下剩下的指令集内容,阐述其分别代表了什么含义,以及 JVM 团队这样 ...

  4. 思科CISCO 交换机命名规则

      思科交换机的命名规则要比路由的命名规则复杂, 看下这些:WS-C2960-24TC-L .WS-C2950G-24-EI-DC .WS-C2960-24TT-L .WS-C3750G-24TS-E ...

  5. iText输出中文的三种字体选择方式

    1.使用iTextAsian.jar中的字体    BaseFont.createFont("STSong-Light", "UniGB-UCS2-H",Bas ...

  6. SAS编程基础 - 数据获取与数据集操作(1)

    1. 数据来源 SAS数据来源主要有两种:一是通过input语句创建,另外一种方式是通过外部数据文件获取. 1.1 libname 1.2 odbc 1.3 passthrough 1.4 impor ...

  7. Linux watchdog 6300esb

     基本原理: Linux 自带了一个 watchdog 的实现,用于监视系统的执行,包含一个内核 watchdog module 和一个用户空间的 watchdog 程序.内核 watchdog ...

  8. 【bzoj1260】[CQOI2007]涂色paint

    题意:就是说一开始一个序列是空的,然后每次可以将连续的一段染成同一颜色,问多少次才能到目标状态. 一开始想的是二分,然后题解DP... f[i][j]表示区间[i,j]需要染色多少次 首先初始状态是f ...

  9. 怎样处理Gradle中的这个文件下载慢的问题的

    如图:在build.gradle中的dependencies中加上要依赖的包后,就点击sync gradle.然后就开始了下载.在此过程中我是FQ了的(在此同时我是可以用chrome进入https:/ ...

  10. YTU 2542: 弟弟的作业

    2542: 弟弟的作业 时间限制: 1 Sec  内存限制: 128 MB 提交: 130  解决: 57 题目描述 你的弟弟刚做完了"100以内数的加减法"这部分的作业,请你帮他 ...