本文转载自:http://blog.csdn.net/dlutbrucezhang/article/details/9212067

Linux内核的等待队列是以双循环链表为基础数据结构,与进程调度机制紧密结合,能够用于实现核心的异步事件通知机制。

在这个链表中,有两种数据结构:等待队列头(wait_queue_head_t)和等待队列项(wait_queue_t)。等待队列头和等待队列项中都包含一个list_head类型的域作为"连接件"。它通过一个双链表和把等待tast的头,和等待的进程列表链接起来。从上图可以清晰看到。所以我们知道,如果要实现一个等待队列,首先要有两个部分。队列头和队列项。下面看他们的数据结构。

  1. <span style="font-size:18px;"><strong>struct list_head {
  2. struct list_head *next, *prev;
  3. };
  4. struct __wait_queue_head {
  5. spinlock_t lock;
  6. struct list_head task_list;
  7. };
  8. typedef struct __wait_queue_head wait_queue_head_t;
  9. struct __wait_queue {
  10. unsigned int flags;
  11. #define WQ_FLAG_EXCLUSIVE    0x01
  12. void *private;//2.6版本是采用void指针,而以前的版本是struct task_struct * task;
  13. //实际在用的时候,仍然把private赋值为task
  14. wait_queue_func_t func;
  15. struct list_head task_list;
  16. };
  17. </strong></span>

 

所以队列头和队列项是通过list_head联系到一起的,list_head是一个双向链表,在linux内核中有着广泛的应用。并且在list.h中对它有着很多的操作。

 

2.对列头和队列项的初始化:
 wait_queue_head_t my_queue;

init_waitqueue_head(&my_queue);

直接定义并初始化。init_waitqueue_head()函数会将自旋锁初始化为未锁,等待队列初始化为空的双向循环链表。

DECLARE_WAIT_QUEUE_HEAD(my_queue);

定义并初始化

3.定义等待队列: DECLARE_WAITQUEUE(name,tsk);

  1. <span style="font-size:18px;"><strong>#define   DECLARE_WAITQUEUE(name,   tsk)       /
  2. wait_queue_t   name     =__WAITQUEUE_INITIALIZER(name,   tsk)
  3. #define   __WAITQUEUE_INITIALIZER(name,   tsk)   {         task:     tsk,        task_list:  {  NULL,   NULL   },  __WAITQUEUE_DEBUG_INI(name)}
  4. </strong></span>


它的解释是: 
通过DECLARE_WAITQUEUE宏将等待队列项初始化成对应的任务结构,并且用于连接的相关指针均设置为空。其中加入了调试相关代码。 
进程通过执行下面步骤将自己加入到一个等待队列中:
1) 调用DECLARE_WAITQUEUE()创建一个等待队列的项;
2) 调用add_wait_queue()把自己加入到等待队列中。该队列会在进程等待的条件满足时唤醒它。在其他地方写相关代码,在事件发生时,对等的队列执行wake_up()操作。
3) 将进程状态变更为: TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE。
4) 如果状态被置为TASK_INTERRUPTIBLE ,则信号唤醒进程。即为伪唤醒(唤醒不是因为事件的发生),因此检查并处理信号。
5) 检查condition是否为真,为真则没必要休眠,如果不为真,则调用scheduled()。
6) 当进程被唤醒的时候,它会再次检查条件是否为真。真就退出循环,否则再次调用scheduled()并一直重复这步操作。
7) condition满足后,进程将自己设置为TASK_RUNNING 并通过remove_wait_queue()退出。

 

4.(从等待队列头中)添加/移出等待队列

(1)add_wait_queue()函数: (2)remove_wait_queue()函数:

 

5.等待事件:(有条件睡眠)

1)wait_event()宏:

  1. <span style="font-size:18px;"><strong>#define wait_event(wq, condition) /
  2. do { /
  3. if (condition) /
  4. break; /
  5. __wait_event(wq, condition); /
  6. } while (0)
  7. #define __wait_event_timeout(wq, condition, ret) /
  8. do { /
  9. DEFINE_WAIT(__wait); /
  10. /
  11. for (;;) { /
  12. prepare_to_wait(&wq, &__wait, TASK_UNINTERRUPTIBLE); /
  13. if (condition) /
  14. break; /
  15. ret = schedule_timeout(ret); /
  16. if (!ret) /
  17. break; /
  18. } /
  19. finish_wait(&wq, &__wait); /
  20. } while (0)
  21. </strong></span>


在等待会列中睡眠直到condition为真。在等待的期间,进程会被置为TASK_UNINTERRUPTIBLE进入睡眠,直到condition变量变为真。每次进程被唤醒的时候都会检查condition的值.

(2)wait_event_interruptible()函数:

和wait_event()的区别是调用该宏在等待的过程中当前进程会被设置为TASK_INTERRUPTIBLE状态.在每次被唤醒的时候,首先检查condition是否为真,如果为真则返回,否则检查如果进程是被信号唤醒,会返回-ERESTARTSYS错误码.如果是condition为真,则返回0.

(3)wait_event_timeout()宏:

也与wait_event()类似.不过如果所给的睡眠时间为负数则立即返回.如果在睡眠期间被唤醒,且condition为真则返回剩余的睡眠时间,否则继续睡眠直到到达或超过给定的睡眠时间,然后返回0.

(4)wait_event_interruptible_timeout()宏:

与wait_event_timeout()类似,不过如果在睡眠期间被信号打断则返回ERESTARTSYS错误码.

(5) wait_event_interruptible_exclusive()宏

同样和wait_event_interruptible()一样,不过该睡眠的进程是一个互斥进程.

 

6.唤醒队列:

(1)wake_up()函数:

唤醒等待队列.可唤醒处于TASK_INTERRUPTIBLE和TASK_UNINTERUPTIBLE状态的进程,和wait_event/wait_event_timeout成对使用.

2)wake_up_interruptible()函数: #define wake_up_interruptible(x) __wake_up(x, TASK_INTERRUPTIBLE, 1, NULL)

和wake_up()唯一的区别是它只能唤醒TASK_INTERRUPTIBLE状态的进程.,与wait_event_interruptible/wait_event_interruptible_timeout/ wait_event_interruptible_exclusive成对使用.

 

TASK_INTERRUPTIBLE,允许通过发送signal唤醒它(即可中断的睡眠状态);

TASK_UNINTERRUPTIBLE,不接收任何 singal

 

7.在等待队列上睡眠:(无条件睡眠,老内核使用,新内核建议不用)

 (1)sleep_on()函数:

该函数的作用是定义一个等待队列(wait),并将当前进程添加到等待队列中(wait),然后将当前进程的状态置为TASK_UNINTERRUPTIBLE,并将等待队列(wait)添加到等待队列头(q)中。之后就被挂起直到资源可以获取,才被从等待队列头(q)中唤醒,从等待队列头中移出。在被挂起等待资源期间,该进程不能被信号唤醒。

(2)sleep_on_timeout()函数:

 

与sleep_on()函数的区别在于调用该函数时,如果在指定的时间内(timeout)没有获得等待的资源就会返回。实际上是调用schedule_timeout()函数实现的。值得注意的是如果所给的睡眠时间(timeout)小于0,则不会睡眠。该函数返回的是真正的睡眠时间。

(3)interruptible_sleep_on()函数:

该函数和sleep_on()函数唯一的区别是将当前进程的状态置为TASK_INTERRUPTINLE,这意味在睡眠如果该进程收到信号则会被唤醒。

(4)interruptible_sleep_on_timeout()函数:

类似于sleep_on_timeout()函数。进程在睡眠中可能在等待的时间没有到达就被信号打断而被唤醒,也可能是等待的时间到达而被唤醒。

Linux 进程等待队列【转】的更多相关文章

  1. Linux 进程等待队列

    Linux内核的等待队列是以双循环链表为基础数据结构,与进程调度机制紧密结合,能够用于实现核心的异步事件通知机制. 在这个链表中,有两种数据结构:等待队列头(wait_queue_head_t)和等待 ...

  2. Linux进程管理知识整理

    Linux进程管理知识整理 1.进程有哪些状态?什么是进程的可中断等待状态?进程退出后为什么要等待调度器删除其task_struct结构?进程的退出状态有哪些? TASK_RUNNING(可运行状态) ...

  3. Linux进程的睡眠和唤醒简析

    COPY FROM:http://www.2cto.com/os/201204/127771.html 1 Linux进程的睡眠和唤醒 在Linux中,仅等待CPU时间的进程称为就绪进程,它们被放置在 ...

  4. linux进程模型总结

    Linux进程通过一个task_struct结构体描述,在linux/sched.h中定义,通过理解该结构,可更清楚的理解linux进程模型.       包含进程所有信息的task_struct数据 ...

  5. linux进程解析--进程的创建

    通常我们在代码中调用fork()来创建一个进程或者调用pthread_create()来创建一个线程,创建一个进程需要为其分配内存资源,文件资源,时间片资源等,在这里来描述一下linux进程的创建过程 ...

  6. Linux进程模型

    ----原文链接:http://www.cnblogs.com/biyeymyhjob/archive/2012/08/01/2617884.html------ Linux进程通过一个task_st ...

  7. Linux唤醒抢占----Linux进程的管理与调度(二十三)

    1. 唤醒抢占 当在try_to_wake_up/wake_up_process和wake_up_new_task中唤醒进程时, 内核使用全局check_preempt_curr看看是否进程可以抢占当 ...

  8. Linux进程管理 (2)CFS调度器

    关键词: 目录: Linux进程管理 (1)进程的诞生 Linux进程管理 (2)CFS调度器 Linux进程管理 (3)SMP负载均衡 Linux进程管理 (4)HMP调度器 Linux进程管理 ( ...

  9. Linux中等待队列的实现

    1.       等待队列数据结构 等待队列由双向链表实现,其元素包括指向进程描述符的指针.每个等待队列都有一个等待队列头(wait queue head),等待队列头是一个类型为wait_quequ ...

随机推荐

  1. ado:SqlDataAdapter的两种不同写法,以及SqlCommand的两种不同写法

    原文发布时间为:2008-08-01 -- 来源于本人的百度文章 [由搬家工具导入] SqlDataAdapter:(它是自动打开连接且自动关闭的,所以可以不必显示打开关闭连接) SqlConnect ...

  2. linux网络性能评估

    Linux网络性能评估 参考自:自学it网,http://www.zixue.it/. 网络性能评估(1)通过ping命令检测网络的连通性.(2)通过netstat -i 组合检测网络接口状况.(3) ...

  3. SGU112

    题意:求a^b-b^a次,100以内.大数的-和*的模拟,用的模板,注意该模板中间和结果都不能出现负数. #include<iostream> #include<string> ...

  4. HUNAN 11560 Yangyang loves AC(二分+贪心)

    http://acm.hunnu.edu.cn/online/?action=problem&type=show&id=11560&courseid=0 题意:总共有n天,每天 ...

  5. Centos7安装完成后一些基本操作

    1.基本操作一:主机名 # centos7有一个新的修改主机名的命令hostnamectl hostnamectl set-hostname --static www.node1.com # 有些命令 ...

  6. LeetCode第一题以及时间复杂度的计算

    问题描述:给定一组指定整数数组,找出数组中加和等于特定数的两个数. 函数(方法)twoSum返回这两个数的索引,index1必须小于index2. 另外:你可以假设一个数组只有一组解. 一个栗子: I ...

  7. Spring基于Setter函数的依赖注入(DI)

    以下内容引用自http://wiki.jikexueyuan.com/project/spring/dependency-injection/spring-setter-based-dependenc ...

  8. 异常来自 HRESULT:0x800A01A8

    Windows 10 Enterprise Microsoft Office 2013 – Excel Oracle BI Publisher Desktop 11.1.1.7 异常来自 HRESUL ...

  9. Activiti Model Editor组件

    通过Activiti Modeler架构图可知,Activiti Explorer采用的是Vaadin框架. Vaadin 是一种 Java Web 应用程序的开发框架, 其设计目标是便利地创建和维护 ...

  10. flask可以通过缓存模板或者页面达到性能提升

    flask可通过插件flask-cache缓存页面,或者把模板缓存到memcache里,增加访问速度. 前提是:页面不是频繁变化的.如果你的访问量很大的话,哪怕缓存一两分钟也会大大的提高性能的 Fla ...