Description


有一个m*n格的迷宫(表示有m行、n列),其中有可走的也有不可走的,如果用1表示可以走,0表示不可以走,文件读入这m*n个数据和起始点、结束点(起始点和结束点都是用两个数据来描述的,分别表示这个点的行号和列号)。现在要你编程找出所有可行的道路,要求所走的路中没有重复的点,走时只能是上下左右四个方向。如果一条路都不可行,则输出相应信息(用-l表示无路)。

优先顺序:左上右下

Input


第一行是两个数m,n(1 < m,n < 15),接下来是m行n列由1和0组成的数据,最后两行是起始点和结束点。

Output


所有可行的路径,描述一个点时用(x,y)的形式,除开始点外,其他的都要用“一>”表示方向。

如果没有一条可行的路则输出-1。

Sample Input


5 6

1 0 0 1 0 1

1 1 1 1 1 1

0 0 1 1 1 0

1 1 1 1 1 0

1 1 1 0 1 1

1 1

5 6

Sample Output


(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(2,5)->(3,5)->(3,4)->(3,3)->(4,3)->(4,4)->(4,5)->(5,5)->(5,6)

(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(2,5)->(3,5)->(3,4)->(4,4)->(4,5)->(5,5)->(5,6)

(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(2,5)->(3,5)->(4,5)->(5,5)->(5,6)

(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(3,4)->(3,3)->(4,3)->(4,4)->(4,5)->(5,5)->(5,6)

(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(3,4)->(3,5)->(4,5)->(5,5)->(5,6)

(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(3,4)->(4,4)->(4,5)->(5,5)->(5,6)

(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(3,4)->(2,4)->(2,5)->(3,5)->(4,5)->(5,5)->(5,6)

(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(3,4)->(3,5)->(4,5)->(5,5)->(5,6)

(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(3,4)->(4,4)->(4,5)->(5,5)->(5,6)

(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(4,3)->(4,4)->(3,4)->(2,4)->(2,5)->(3,5)->(4,5)->(5,5)->(5,6)

(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(4,3)->(4,4)->(3,4)->(3,5)->(4,5)->(5,5)->(5,6)

(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(4,3)->(4,4)->(4,5)->(5,5)->(5,6)

题解


按题意暴搜即可。

第一次忘了给(1,1)打经历过的tag,卡掉了一次

#include<cstdio>
#include<iostream>
using namespace std;
bool sf[17][17];
int sx,sy,tx,ty;
int m,n;
int mx[5]={0,0,-1,0,1};
int my[5]={0,-1,0,1,0};
int stack[307][2];
int tos=0;
bool ss[17][17];
int flag=0;
void print()
{
flag++;
printf("(%d,%d)",sx,sy);
for(int i=1;i<=tos;++i)
printf("->(%d,%d)",stack[i][0],stack[i][1]);
cout<<endl;
return;
}
void search(int x,int y)
{
for(int c=1;c<=4;++c)
{
x+=mx[c],y+=my[c];
if(sf[x][y]&&!ss[x][y])
{
//cout<<x<<" "<<y<<endl;
stack[++tos][0]=x;stack[tos][1]=y;
if(x==tx&&y==ty){print();}
else {ss[x][y]=1;search(x,y);ss[x][y]=0;}
tos--;
}
x-=mx[c],y-=my[c];
}
return;
}
int main()
{
cin>>m>>n;
for(int i=1;i<=m;++i)
for(int j=1;j<=n;++j)
cin>>sf[i][j];cin>>sx>>sy>>tx>>ty;
ss[sx][sy]=1;
search(sx,sy);
if(!flag)cout<<-1;
return 0;
}

「LuoguP1238」 走迷宫的更多相关文章

  1. Loj #2542. 「PKUWC2018」随机游走

    Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...

  2. 「PKUWC2018」随机游走(min-max容斥+FWT)

    「PKUWC2018」随机游走(min-max容斥+FWT) 以后题目都换成这种「」形式啦,我觉得好看. 做过重返现世的应该看到就想到 \(min-max\) 容斥了吧. 没错,我是先学扩展形式再学特 ...

  3. 「Luogu4321」随机游走

    「Luogu4321」随机游走 题目描述 有一张 \(n\) 个点 \(m\) 条边的无向图,\(Q\) 组询问,每次询问给出一个出发点和一个点集 \(S\) ,求从出发点出发随机游走走遍这个点集的期 ...

  4. 「HNOI2013」游走

    「HNOI2013」游走 题目描述 一个无向连通图,顶点从 \(1\) 编号到 \(N\) ,边从 \(1\) 编号到 \(M\) .小 \(Z\) 在该图上进行随机游走,初始时小 \(Z\) 在 \ ...

  5. LOJ2542. 「PKUWC2018」随机游走

    LOJ2542. 「PKUWC2018」随机游走 https://loj.ac/problem/2542 分析: 为了学习最值反演而做的这道题~ \(max{S}=\sum\limits_{T\sub ...

  6. 做高逼格程序员之说走就走的「Windows」

    简介:随着移动固态硬盘越来越便宜,网上逐渐出来一个黑科技.Windows To GO见名知意.简单来说就是在U盘或者是移动固态硬盘上安装Windows系统.达到即插即用. WTG 简介 Windows ...

  7. 用Q-learning算法实现自动走迷宫机器人

    项目描述: 在该项目中,你将使用强化学习算法,实现一个自动走迷宫机器人. 如上图所示,智能机器人显示在右上角.在我们的迷宫中,有陷阱(红色炸弹)及终点(蓝色的目标点)两种情景.机器人要尽量避开陷阱.尽 ...

  8. 「2014-5-31」Z-Stack - Modification of Zigbee Device Object for better network access management

    写一份赏心悦目的工程文档,是很困难的事情.若想写得完善,不仅得用对工具(use the right tools),注重文笔,还得投入大把时间,真心是一件难度颇高的事情.但,若是真写好了,也是善莫大焉: ...

  9. 「NOI2013」小 Q 的修炼 解题报告

    「NOI2013」小 Q 的修炼 第一次完整的做出一个提答,花了半个晚上+一个上午+半个下午 总体来说太慢了 对于此题,我认为的难点是观察数据并猜测性质和读入操作 我隔一会就思考这个sb字符串读起来怎 ...

随机推荐

  1. js判断手机的横竖屏调整样式

    在移动端,我们经常遇到横竖屏的问题,所以我们改如何判断或针对横竖屏来写代码呢.首先需要在head中加入如下代码: <meta name="viewport" content= ...

  2. CODEVS_2144 砝码称重 2 折半搜索+二分查找+哈希

    #include<iostream> #include<algorithm> #include<cstring> #include<map> #incl ...

  3. ng-options bug解决方案(示例)

    情况: 无法获取 ng-model 的值 解决方案: 绑定到对象的属性值上 1.页面 <ion-view hide-nav-bar="true"> <ion-co ...

  4. MySQL中insert ignore into, on duplicate key update,replace into,insert … select … where not exist的一些用法总结

    在MySQL中进行条件插入数据时,可能会用到以下语句,现小结一下.我们先建一个简单的表来作为测试: CREATE TABLE `books` ( `id` ) NOT NULL AUTO_INCREM ...

  5. HDU 1248 寒冰王座 (水题的N种做法!)(含完全背包)

    寒冰王座 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  6. 【前端】怎样成长为一名优秀的前端project师---

    浅谈本人的经验.也算是与大家交流吧,本人眼下也是从事前端的工作,时间并不长,说的不好,请见谅. 首先,前端project师必须得掌握HTML.CSS和JavaScript. 仅仅懂当中一个或两个还不行 ...

  7. 杭电 2176 取(m堆)石子游戏(博弈)

    取(m堆)石子游戏 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  8. mips-openwrt-linux-gcc test_usbsw.c -o usbsw 编译问题

      mips-openwrt-linux-gcc: warning: environment variable 'STAGING_DIR' not defined mips-openwrt-linux ...

  9. openwrt gstreamer实例学习笔记(二.gstreamer 的 Element)

    对程序员来说,GStreamer 中最重要的一个概念就是 GstElement 对象.该对象是构建一个媒体管道的基本块.所有上层(high-level)部件都源自GstElement对象.任何一个解码 ...

  10. 在VC中动态加载ODBC的方法

    在使用VC.VB.Delphi等高级语言编写数据库应用程序时,往往需要用户自己在控制面板中配置ODBC数据源.对于一般用户而言,配置ODBC数据源可能是一件比较困难的工作.而且,在实际应用中,用户往往 ...