BZOJ_1563_[NOI2009]诗人小G_决策单调性
BZOJ_1563_[NOI2009]诗人小G_决策单调性
Description
Input
Output
Sample Input
4 9 3
brysj,
hhrhl.
yqqlm,
gsycl.
4 9 2
brysj,
hhrhl.
yqqlm,
gsycl.
1 1005 6
poet
1 1004 6
poet
Sample Output
--------------------
32
--------------------
Too hard to arrange
--------------------
1000000000000000000
--------------------
【样例说明】
前两组输入数据中每行的实际长度均为6,后两组输入数据每行的实际长度均为4。一个排版方案中每行相邻两个句子之间的空格也算在这行的长度中(可参见样例中第二组数据)。每行末尾没有空格。
HINT
总共10个测试点,数据范围满足:
测试点 T N L P
1 ≤10 ≤18 ≤100 ≤5
2 ≤10 ≤2000 ≤60000 ≤10
3 ≤10 ≤2000 ≤60000 ≤10
4 ≤5 ≤100000 ≤200 ≤10
5 ≤5 ≤100000 ≤200 ≤10
6 ≤5 ≤100000 ≤3000000 2
7 ≤5 ≤100000 ≤3000000 2
8 ≤5 ≤100000 ≤3000000 ≤10
9 ≤5 ≤100000 ≤3000000 ≤10
10 ≤5 ≤100000 ≤3000000 ≤10
所有测试点中均满足句子长度不超过30。
设F[i]表示处理完前i个单词的最小不协调度。s[i]为前缀和+i。L=L+1。
$F[i]=F[j]+(s[i]-s[j]-L)^P$
假设有j1<j2<i1<i2.
j2转移i1比j1转移i1优,j1转移i2比j2转移i2优。
那么$F[j2]+(s[i1]-s[j2]-L)^P\le F[j1]+(s[i1]-s[j1]-L)^P$
$F[j1]+(s[i2]-s[j1]-L)^P\le F[j2]+(s[i2]-s[j2]-L)^P$
那么$(s[i1]-s[j2]-L)^P+(s[i2]-s[j1]-L)^P\le (s[i1]-s[j1]-L)^P+(s[i2]-s[j2]-L)^P$
相当于$(X)^P+(Y)^P\le (X-D)^P+(Y+D)^P$ (D=s[j1]-s[j2])显然不成立。
于是DP满足决策单调性。
用一个单调队列维护区间染色,每次二分即可。
注意答案可能爆longlong,double卡精,直接longdouble没问题,当然也可以double判无解再用longlong输出。
代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
typedef double f2;
#define N 100050
inline char nc() {
static char buf[100000],*p1,*p2;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
int rd() {
int x=0; char s=nc();
while(s<'0'||s>'9') s=nc();
while(s>='0'&&s<='9') x=(x<<3)+(x<<1)+s-'0',s=nc();
return x;
}
int rv() {
char s=nc(); int re=0;
while(s<33||s>127) s=nc();
while(s>=33&&s<=127) re++,s=nc();
return re;
}
struct A {
int l,r,p;
}Q[N];
int n,L,P,a[N],from[N],s[N];
f2 f[N];
f2 qp(f2 x,int y) {
f2 re=1; if(x<0) x=-x;
for(;y;y>>=1,x=x*x) if(y&1) re=re*x; return re;
}
ll qpp(ll x,int y) {
ll re=1; if(x<0) x=-x;
for(;y;y>>=1,x=x*x) if(y&1) re=re*x; return re;
}
#define Y(j,i) (f[j]+qp(s[i]-s[j]-L,P))
int find(const A &a,int x) {
int l=a.l,r=a.r+1;
while(l<r) {
int mid=(l+r)>>1;
if(Y(x,mid)>Y(a.p,mid)) l=mid+1;
else r=mid;
}
return l;
}
ll get(int p) {
if(p<n/7) return f[p];
// if(p<700) return f[p];
return get(from[p])+qpp(s[p]-s[from[p]]-L,P);
}
void work() {
n=rd(); L=rd()+1; P=rd();
register int i;
int l,r;
for(i=1;i<=n;i++) {
s[i]=s[i-1]+rv()+1; f[i]=1e20;
}
l=r=0; Q[r++]=(A){0,n,0};
for(i=1;i<=n;i++) {
while(l<r&&Q[l].r<i) l++;
f[i]=Y(Q[l].p,i); from[i]=Q[l].p;
if(Y(i,n)<=Y(Q[r-1].p,n)) {
while(l<r&&Y(i,Q[r-1].l)<=Y(Q[r-1].p,Q[r-1].l)) r--;
if(l==r) Q[r++]=(A){i,n,i};
else {
int x=find(Q[r-1],i);
Q[r-1].r=x-1;
Q[r++]=(A){x,n,i};
}
}
}
if(f[n]>1e18) puts("Too hard to arrange");
else {
printf("%lld\n",get(n));
}
}
int main() {
int T=rd();
while(T--) {
work();
puts("--------------------");
}
}
BZOJ_1563_[NOI2009]诗人小G_决策单调性的更多相关文章
- bzoj1563: [NOI2009]诗人小G 决策单调性(1D1D)
目录 题目链接 题解 代码 题目链接 bzoj1563: [NOI2009]诗人小G 题解 \(n^2\) 的dp长这样 \(f_i = min(f_j + (sum_i - sum_j - 1 - ...
- [NOI2009]诗人小G 决策单调性优化DP
第一次写这种二分来优化决策单调性的问题.... 调了好久,,,各种细节问题 显然有DP方程: $f[i]=min(f[j] + qpow(abs(sum[i] - sum[j] - L - 1))); ...
- BZOJ1563: [NOI2009]诗人小G(决策单调性 前缀和 dp)
题意 题目链接 Sol 很显然的一个dp方程 \(f_i = min(f_j + (sum_i - sum_j - 1 - L)^P)\) 其中\(sum_i = \sum_{j = 1}^i len ...
- P1912 [NOI2009]诗人小G[决策单调性优化]
地址 n个数划分若干段,给定$L$,$p$,每段代价为$|sum_i-sum_j-1-L|^p$,求总代价最小. 正常的dp决策单调性优化题目.不知道为什么luogu给了个黑题难度.$f[i]$表示最 ...
- [BZOJ1563][NOI2009]诗人小G(决策单调性优化DP)
模板题. 每个决策点都有一个作用区间,后来的决策点可能会比先前的优.于是对于每个决策点二分到它会比谁在什么时候更优,得到新的决策点集合与区间. #include<cstdio> #incl ...
- BZOJ1563:[NOI2009]诗人小G(决策单调性DP)
Description Input Output 对于每组数据,若最小的不协调度不超过1018,则第一行一个数表示不协调度若最小的不协调度超过1018,则输出"Too hard to arr ...
- [BZOJ 1563] [NOI 2009] 诗人小G(决策单调性)
[BZOJ 1563] [NOI 2009] 诗人小G(决策单调性) 题面 一首诗包含了若干个句子,对于一些连续的短句,可以将它们用空格隔开并放在一行中,注意一行中可以放的句子数目是没有限制的.小 G ...
- [NOI2009]诗人小G --- DP + 决策单调性
[NOI2009]诗人小G 题目描述: 小G是一个出色的诗人,经常作诗自娱自乐. 但是,他一直被一件事情所困扰,那就是诗的排版问题. 一首诗包含了若干个句子,对于一些连续的短句,可以将它们用空格隔开并 ...
- 1563: [NOI2009]诗人小G
1563: [NOI2009]诗人小G https://lydsy.com/JudgeOnline/problem.php?id=1563 分析: 直接转移f[i]=f[j]+cost(i,j),co ...
随机推荐
- java实现简单的算法
排序大的分类可以分为两种:内排序和外排序.在排序过程中,全部记录存放在内存,则称为内排序,如果排序过程中需要使用外存,则称为外排序.下面讲的排序都是属于内排序. 内排序有可以分为以下几类: (1).插 ...
- Chrome查看同步状态
最近Hosts不太稳定,翻出去之后安装了一些插件,那么会面临一些问题,比如插件是否已经同步成功,其它PC能否获取等等. 下面是一些查询同步状态的入口: https://www.google.com/s ...
- Free web scraping | Data extraction | Web Crawler | Octoparse, Free web scraping
Free web scraping | Data extraction | Web Crawler | Octoparse, Free web scraping 人才知了
- flask的run的运行参数含义
直接阅读源代码吧: 在flask的app.py里,查看run函数的定义 def run(self, host=None, port=None, debug=None, **options): &quo ...
- windows10 開機失敗,且按F8無法進入安全模式
windows10 開機失敗,且按F8無法進入安全模式: 在cmd視窗下: bcdedit set {default} bootmenupolicy legacy 重啟,再按F8試一試吧! To En ...
- Spring -- Bean自己主动装配&Bean之间关系&Bean的作用域
对于学习spring有帮助的站点:http://jinnianshilongnian.iteye.com/blog/1482071 Bean的自己主动装配 Spring IOC 容器能够自己主动装配 ...
- zoj How Many Shortest Path
How Many Shortest Path 题目: 给出一张图,求解最短路有几条.处理特别BT.还有就是要特别处理map[i][i] = 0,数据有不等于0的情况! 竟然脑残到了些错floyd! ! ...
- 【iOS】KVC 与 KVO
一.KVC与KVO *"KVC":key value Coding(键值编码) *目的:间接的改动或获取对象的属性,减少程序(类与类)之间的耦合度. *"KVO" ...
- C3P0连接池配置和实现详解(转)
一.配置 <c3p0-config> <default-config> <!--当连接池中的连接耗尽的时候c3p0一次同时获取的连接数.Default: 3 --> ...
- AVL树,红黑树,B-B+树,Trie树原理和应用
前言:本文章来源于我在知乎上回答的一个问题 AVL树,红黑树,B树,B+树,Trie树都分别应用在哪些现实场景中? 看完后您可能会了解到这些数据结构大致的原理及为什么用在这些场景,文章并不涉及具体操作 ...