计算机视觉讨论群162501053
转载请注明:http://blog.csdn.net/abcd1992719g

收入囊中

  • 利用OpenCV Canny函数进行边缘检測
  • 掌握Canny算法基本理论
  • 分享Java的实现


葵花宝典
在此之前,我们先阐述一下canny检測的算法.总共分为4部分.
(1)处理噪声
一般用高斯滤波.OpenCV使用例如以下核


(2)计算梯度幅值
先用例如以下Sobel算子计算出水平和竖直梯度



然后计算每一个点的梯度幅值和方向   
方向最后选4个 (0, 45, 90 or 135)

(3)非极大值抑制
(图片来自http://blog.csdn.net/likezhaobin/article/details/6892176)
以下的蓝色字体分析也来自http://blog.csdn.net/likezhaobin/article/details/6892176  很感谢
图像梯度幅值矩阵中的元素值越大,说明图像中该点的梯度值越大,但这不不能说明该点就是边缘(这不过属于图像增强的过程)。在Canny算法中,非极大值抑制是进行边缘检測的重要步骤,通俗意义上是指寻找像素点局部最大值,将非极大值点所相应的灰度值置为0,这样能够剔除掉一大部分非边缘的点。

依据上图可知。要进行非极大值抑制,就首先要确定像素点C的灰度值在其8值邻域内是否为最大。图1中蓝色的线条方向为C点的梯度方向。这样就能够确定其局部的最大值肯定分布在这条线上,也即出了C点外,梯度方向的交点dTmp1和dTmp2这两个点的值也可能会是局部最大值。因此。推断C点灰度与这两个点灰度大小就可以推断C点是否为其邻域内的局部最大灰度点。假设经过推断,C点灰度值小于这两个点中的任一个。那就说明C点不是局部极大值。那么则能够排除C点为边缘。把C的灰度值改为0,假设C是极大值。能够设为128。

这就是非极大值抑制的工作原理。


但实际上,我们仅仅能得到C点邻域的8个点的值,而dTmp1和dTmp2并不在当中,要得到这两个值就须要对该两个点两端的已知灰度进行线性插值,也即依据图1中的g1和g2对dTmp1进行插值。依据g3和g4对dTmp2进行插值,这要用到其梯度方向,这是上文Canny算法中要求解梯度方向矩阵theta的原因。

我相信上面的解释很明确了。这也是为什么我们要选0。45,90,135四个方向的原因
  1. ////////////////////第一种情况///////////////////////
  2. /////////       g1  g2                  /////////////
  3. /////////           C                   /////////////
  4. /////////           g3  g4              /////////////
  5. /////////////////////////////////////////////////////
  6. ////////////////////另外一种情况///////////////////////
  7. /////////       g1                      /////////////
  8. /////////       g2  C   g3              /////////////
  9. /////////               g4              /////////////
  10. /////////////////////////////////////////////////////
  11. ////////////////////第三种情况///////////////////////
  12. /////////           g1  g2              /////////////
  13. /////////           C                   /////////////
  14. /////////       g4  g3                  /////////////
  15. /////////////////////////////////////////////////////
  16. ////////////////////第四种情况///////////////////////
  17. /////////               g1              /////////////
  18. /////////       g4  C   g2              /////////////
  19. /////////       g3                      /////////////
  20. /////////////////////////////////////////////////////

(4)双阀值检測

在上个步骤中,产生了梯度幅值, (upper and lower):

假设一个像素点的梯度值大于upper,则是边界

假设一个像素点的梯度值小于lower,则不是边界

假设介于两者之间,仅当这个点和边界点连通才会被觉得是边界点

依据高阈值得到一个边缘图像,这样一个图像含有非常少的假边缘。可是因为阈值较高。产生的图像边缘可能不闭合。为解决这样一个问题採用了另外一个低阈值。在高阈值图像中把边缘链接成轮廓,当到达轮廓的端点时。该算法会在断点的8邻域点中寻找满足低阈值的点。再依据此点收集新的边缘,直到整个图像边缘闭合。

Canny推荐upper:lower 的比例为  2:1 或者 3:1.

小提示:由于,所以最高阀值不是255而是360!还有处于[lower,upper]的点检測是否是边界肯定要放在最后一步。也就是[0,lower),(upper,360]的点都处理完再处理。这样才干判连通!


初识API
C++: void Canny(InputArray image,
OutputArray edges, double threshold1, double threshold2, int apertureSize=3, bool L2gradient=false )
 
  • image – 单通道8比特图像
  • edges – 输出图像。和src有同样的大小类型
  • threshold1 – 低阀值
  • threshold2 – 高阀值
  • apertureSize – Sobel算子的大小
  • L2gradient – 一个标识位,一旦设置就启用更准确的  norm  去计算图像梯度,默认使用 norm 


荷枪实弹
我们就来看看非常easy的例子程序吧
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <iostream> using namespace cv; /// Global variables
Mat src, src_gray;
Mat dst, detected_edges; int lowThreshold;
int const max_lowThreshold = 100;
int ratio = 3;
int kernel_size = 3;
const char* window_name = "Edge Map"; static void CannyThreshold(int, void*)
{
blur( src_gray, detected_edges, Size(3,3) );
Canny( detected_edges, detected_edges, lowThreshold, lowThreshold*ratio, kernel_size );
dst = Scalar::all(0);
//detected_edges是mask,仅仅有detected_edges被置上(边缘)。才会从原始彩色图像copy到dot中,所以展示的是彩色边缘
src.copyTo( dst, detected_edges);
imshow( window_name, dst );
} int main( int, char** argv )
{
src = imread( argv[1] );
dst.create( src.size(), src.type() );
cvtColor( src, src_gray, CV_BGR2GRAY ); namedWindow( window_name, CV_WINDOW_AUTOSIZE );
createTrackbar( "Min Threshold:", window_name, &lowThreshold, max_lowThreshold, CannyThreshold ); CannyThreshold(0, 0); waitKey(0);
return 0;
}

效果图:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvYWJjZDE5OTI3MTln/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" width="454" height="528" alt="">



举一反三



C的实现http://blog.csdn.net/likezhaobin/article/details/6892629

以下是一个Java实现,曾经是在windows上写的。如今在mac里怎么编码有问题了...

public int[][] CannyEdgeDetect(int[][] oldmat)
{ int[][] tempI = gaussFilter(oldmat); //////////////////Õ¨—˘ø…“‘”√≤ªÕ¨µƒºÏ≤‚∆˜/////////////////////////
///// P[i,j]=(S[i,j+1]-S[i,j]+S[i+1,j+1]-S[i+1,j])/2 /////
///// Q[i,j]=(S[i,j]-S[i+1,j]+S[i,j+1]-S[i+1,j+1])/2 /////
/////////////////////////////////////////////////////////////////
float[][] P = new float[height][width]; //xœÚ∆´µº ˝
float[][] Q = new float[height][width]; //yœÚ∆´µº ˝
int[][] M = new int[height][width]; //Û∂»∑˘÷µ
float[][] Theta = new float[height][width]; //Û∂»∑ΩœÚ
//º∆À„x,y∑ΩœÚµƒ∆´µº ˝
for(int i=0; i<(width-1); i++)
{
for(int j=0; j<(height-1); j++)
{
P[j][i] = (float)(tempI[j][Math.min(i+1, width-1)] - tempI[j][i] + tempI[Math.min(j+1, height-1)][Math.min(i+1, width-1)] - tempI[Math.min(j+1, height-1)][i])/2;
Q[j][i] = (float)(tempI[j][i] - tempI[Math.min(j+1, height-1)][i] + tempI[j][Math.min(i+1, width-1)] - tempI[Math.min(j+1, height-1)][Math.min(i+1, width-1)])/2; }
}
//º∆À„Û∂»∑˘÷µ∫ÕÛ∂»µƒ∑ΩœÚ
for(int i=0; i<width; i++)
{
for(int j=0; j<height; j++)
{
M[j][i] = (int)(Math.sqrt(P[j][i]*P[j][i] + Q[j][i]*Q[j][i])+0.5);
//System.out.println(M[j][i]);
Theta[j][i] = (float) (Math.atan2(Q[j][i], P[j][i]) * 57.3);
if(Theta[j][i] < 0)
Theta[j][i] += 360; //Ω´’‚∏ˆΩ«∂»◊™ªªµΩ0~360∑∂Œß
}
} int[][] N = new int[height][width]; //∑«º´¥Û÷µ“÷÷∆Ω·π˚
int g1=0, g2=0, g3=0, g4=0; //”√”⁄Ω¯––≤Â÷µ£¨µ√µΩ—«œÒÀÿµ„◊¯±Í÷µ
double dTmp1=0.0, dTmp2=0.0; //±£¥Ê¡Ω∏ˆ—«œÒÀÿµ„≤Â÷µµ√µΩµƒª“∂» ˝æ›
double dWeight=0.0; //≤Â÷µµƒ»®÷ÿ //±flΩÁ≥ı ºªØ
for(int i=0; i<width; i++)
{
N[0][i] = 0;
N[height-1][i] = 0;
}
for(int j=0; j<height; j++)
{
N[j][0] = 0;
N[j][width-1] = 0;
} //Ω¯––æ÷≤ø◊Ó¥Û÷µ—∞’“
for(int i=1; i<(width-1); i++)
{
for(int j=1; j<(height-1); j++)
{
if(M[j][i] == 0)
N[j][i] = 0; //»Áπ˚µ±«∞Û∂»∑˘÷µŒ™0£¨‘Ú≤ª «æ÷≤ø◊Ó¥Û∂‘∏√µ„∏≥Œ™0
else
{
//////// ◊œ»≈–∂œ Ù”⁄ƒ«÷÷«Èøˆ£¨»ª∫Û∏˘æ›«Èøˆ≤Â÷µ///////
////////////////////µ⁄“ª÷÷«Èøˆ///////////////////////
///////// g1 g2 /////////////
///////// C /////////////
///////// g3 g4 /////////////
/////////////////////////////////////////////////////
if( ((Theta[j][i]>=90)&&(Theta[j][i]<135)) ||
((Theta[j][i]>=270)&&(Theta[j][i]<315)))
{
//////∏˘æ›–±¬ ∫ÕÀƒ∏ˆ÷–º‰÷µΩ¯––≤Â÷µ«ÛΩ‚
g1 = M[j-1][i-1];
g2 = M[j-1][i];
g3 = M[j+1][i];
g4 = M[j+1][i+1];
dWeight = Math.abs(P[j][i])/Math.abs(Q[j][i]); //∑¥’˝«–
dTmp1 = g1*dWeight+g2*(1-dWeight);
dTmp2 = g4*dWeight+g3*(1-dWeight);
}
////////////////////µ⁄∂˛÷÷«Èøˆ///////////////////////
///////// g1 /////////////
///////// g2 C g3 /////////////
///////// g4 /////////////
/////////////////////////////////////////////////////
else if( ((Theta[j][i]>=135)&&(Theta[j][i]<180)) ||
((Theta[j][i]>=315)&&(Theta[j][i]<360)))
{
g1 = M[j-1][i-1];
g2 = M[j][i-1];
g3 = M[j][i+1];
g4 = M[j+1][i+1];
dWeight = Math.abs(Q[j][i])/Math.abs(P[j][i]); //’˝«–
dTmp1 = g2*dWeight+g1*(1-dWeight);
dTmp2 = g4*dWeight+g3*(1-dWeight);
}
////////////////////µ⁄»˝÷÷«Èøˆ///////////////////////
///////// g1 g2 /////////////
///////// C /////////////
///////// g4 g3 /////////////
/////////////////////////////////////////////////////
else if( ((Theta[j][i]>=45)&&(Theta[j][i]<90)) ||
((Theta[j][i]>=225)&&(Theta[j][i]<270)))
{
g1 = M[j-1][i];
g2 = M[j-1][i+1];
g3 = M[j+1][i];
g4 = M[j+1][i-1];
dWeight = Math.abs(P[j][i])/Math.abs(Q[j][i]); //∑¥’˝«–
dTmp1 = g2*dWeight+g1*(1-dWeight);
dTmp2 = g3*dWeight+g4*(1-dWeight);
}
////////////////////µ⁄Àƒ÷÷«Èøˆ///////////////////////
///////// g1 /////////////
///////// g4 C g2 /////////////
///////// g3 /////////////
/////////////////////////////////////////////////////
else if( ((Theta[j][i]>=0)&&(Theta[j][i]<45)) ||
((Theta[j][i]>=180)&&(Theta[j][i]<225)))
{
g1 = M[j-1][i+1];
g2 = M[j][i+1];
g3 = M[j+1][i-1];
g4 = M[j][i-1];
dWeight = Math.abs(Q[j][i])/Math.abs(P[j][i]); //’˝«–
dTmp1 = g1*dWeight+g2*(1-dWeight);
dTmp2 = g3*dWeight+g4*(1-dWeight);
}
}
//////////Ω¯––æ÷≤ø◊Ó¥Û÷µ≈–∂œ£¨≤¢–¥»ÎºÏ≤‚Ω·π˚////////////////
if((M[j][i]>=dTmp1) && (M[j][i]>=dTmp2))
N[j][i] = 128;
else
N[j][i] = 0; //System.out.println(N[j][i]);
}
} //À´∑ß÷µºÏ≤‚ µœ÷
int []nHist = new int[1024];
int nEdgeNum; //ø…ƒ‹±flΩÁ ˝
int nMaxMag = 0; //◊Ó¥ÛÛ∂» ˝
int nHighCount; //Õ≥º∆÷±∑ΩÕº
for(int i=0;i<1024;i++)
nHist[i] = 0;
for(int i=0; i<width; i++)
{
for(int j=0; j<height; j++)
{
if(N[j][i]==128)
nHist[M[j][i]]++;
}
} //ªÒ»°◊Ó¥ÛÛ∂»∑˘÷µº∞«±‘⁄±fl‘µµ„∏ˆ ˝
nEdgeNum = nHist[0];
nMaxMag = 0; //ªÒ»°◊Ó¥ÛµƒÃ›∂»÷µ
for(int i=1; i<1024; i++) //Õ≥º∆æ≠π˝°∞∑«◊Ó¥Û÷µ“÷÷∆°±∫Û”–∂‡…ŸœÒÀÿ
{
if(nHist[i] != 0) //Û∂»Œ™0µƒµ„ «≤ªø…ƒ‹Œ™±flΩÁµ„µƒ
{
nMaxMag = i;
}
nEdgeNum += nHist[i]; //æ≠π˝non-maximum suppression∫Û”–∂‡…ŸœÒÀÿ
} //º∆À„¡Ω∏ˆ∑ß÷µ
float dRatHigh = 0.79f;
float dThrHigh;
float dThrLow;
float dRatLow = 0.5f;
nHighCount = (int)(dRatHigh * nEdgeNum + 0.5);
int k = 1;
nEdgeNum = nHist[1];
while((k<(nMaxMag-1)) && (nEdgeNum < nHighCount))
{
k++;
nEdgeNum += nHist[k];
}
dThrHigh = k; //∏fl„–÷µ
dThrLow = (int)((dThrHigh) * dRatLow + 0.5); //µÕ„–÷µ
System.out.println("high = " + dThrHigh + "low = " + dThrLow);
//dThrHigh = 10;
//dThrLow = 5; //Ω¯––±fl‘µºÏ≤‚
int cx = width;
int cy = height;
for(int i=0; i<width; i++)
{
for(int j=0; j<height; j++)
{
if((N[j][i]==128) && (M[j][i] >= dThrHigh))
{
N[j][i] = 255;
TraceEdge(j, i, (int)(dThrLow+0.5), N, M);
}
}
} //Ω´ªπ√ª”–…Ë÷√Œ™±flΩÁµƒµ„…Ë÷√Œ™∑«±flΩÁµ„
for(int i=0; i<width; i++)
{
for(int j=0; j<height; j++)
{
if(N[j][i] != 255)
{
N[j][i] = 0 ; // …Ë÷√Œ™∑«±flΩÁµ„
}
N[j][i] = N[j][i] + (N[j][i] << 8) + (N[j][i] << 16);
}
} return N; } /*
* cancy ∏®÷˙∫Ø ˝
*/
private void TraceEdge(int y, int x, int nThrLow, int[][] pResult, int[][] pMag)
{
//∂‘8¡⁄”ÚœÒÀÿΩ¯––≤È—Ø
int[] xNum = {1,1,0,-1,-1,-1,0,1};
int[] yNum = {0,1,1,1,0,-1,-1,-1};
int yy,xx,k;
for(k=0;k<8;k++)
{
yy = y+yNum[k];
xx = x+xNum[k];
if(pResult[yy][xx]==128 && pMag[yy][xx]>=nThrLow )
{
//∏√µ„…ËŒ™±flΩÁµ„
pResult[yy][xx] = 255;
//“‘∏√µ„Œ™÷––ƒ‘ŸΩ¯––∏˙◊Ÿ
TraceEdge(yy,xx,nThrLow,pResult,pMag);
}
}
}

初识API

OpenCV2马拉松第17圈——边缘检測(Canny边缘检測)的更多相关文章

  1. OpenCV2马拉松第15圈——边缘检測(Laplace算子,LOG算子)

    收入囊中 拉普拉斯算子 LOG算子(高斯拉普拉斯算子) OpenCV Laplacian函数 构建自己的拉普拉斯算子 利用拉普拉斯算子进行图像的锐化 葵花宝典 在OpenCV2马拉松第14圈--边缘检 ...

  2. OpenCV2马拉松第14圈——边缘检測(Sobel,prewitt,roberts)

    收入囊中 差分在边缘检測的角色 Sobel算子 OpenCV sobel函数 OpenCV Scharr函数 prewitt算子 Roberts算子 葵花宝典 差分在边缘检測究竟有什么用呢?先看以下的 ...

  3. openCV2马拉松第19圈——Harris角点检測(自己实现)

    计算机视觉讨论群162501053 转载请注明:http://blog.csdn.net/abcd1992719g/article/details/26824529 收入囊中 使用OpenCV的con ...

  4. OpenCV2马拉松第22圈——Hough变换直线检測原理与实现

    计算机视觉讨论群162501053 转载请注明:http://blog.csdn.net/abcd1992719g/article/details/27220445 收入囊中 Hough变换 概率Ho ...

  5. OpenCV2马拉松第24圈——轮廓提取

    计算机视觉讨论群162501053 转载请注明:http://blog.csdn.net/abcd1992719g/article/details/27979267 收入囊中 在图片中找到轮廓而且描绘 ...

  6. OpenCV2马拉松第5圈——线性滤波

    收入囊中 这里的非常多内容事实上在我的Computer Vision: Algorithms and ApplicationsのImage processing中都有讲过 相关和卷积工作原理 边界处理 ...

  7. OpenCV2马拉松第13圈——模版匹配

    收入囊中 在http://blog.csdn.net/abcd1992719g/article/details/25505315这里,我们已经学习了怎样利用反向投影和meanshift算法来在图像中查 ...

  8. OpenCV2马拉松第2圈——读写图片

    收入囊中 用imread读取图片 用nameWindow和imshow展示图片 cvtColor彩色图像灰度化 imwrite写图像 Luv色彩空间转换 初识API 图像读取接口 image = im ...

  9. OpenCV2马拉松第10圈——直方图反向投影(back project)

    收入囊中 灰度图像的反向投影 彩色图像的反向投影 利用反向投影做object detect 葵花宝典 什么是反向投影?事实上没有那么高大上! 在上一篇博文学到,图像能够获得自己的灰度直方图. 反向投影 ...

随机推荐

  1. [ CodeForces 1063 B ] Labyrinth

    \(\\\) \(Description\) 给出一个四联通的\(N\times M\) 网格图和起点.图中有一些位置是障碍物. 现在上下移动步数不限,向左至多走 \(a\) 步,向右至多走 \(b\ ...

  2. 2105. [NOIP2015] 信息传递

    ★☆   输入文件:2015message.in   输出文件:2015message.out   简单对比 时间限制:1 s   内存限制:256 MB [题目描述] 有n个同学(编号为1到n)正在 ...

  3. JavaScript中逻辑运算符的使用

    逻辑运算符用于对一个或多个布尔值进行逻辑运算.在JavaScript中有3个逻辑运算符,如下表所示. 运算符 描述 示例 && 逻辑与 a && b  //当a和b都为 ...

  4. 多路开关模式的switch语句

    在实例10中,将break语句去掉之后,会将符合检验条件后的所有语句都输出.利用这个特点,可以设计多路开关模式的switch语句,例如:在平年一年12个月,1.3.5.7.8.10.12月是31天,4 ...

  5. python自动化--语言基础一数据类型及类型转换

    Python中核心的数据类型有哪些?变量(数字.字符串.元组.列表.字典) 什么是数据的不可变性?哪些数据类型具有不可变性数据的不可变是指数据不可更改,比如: a = () #定义元组 #a[]= # ...

  6. 联想 Z5 Pro(L78031)免解锁BL 免rec 保留数据 ROOT Magisk Xposed 救砖ZUI 10.0.355

    >>>重点介绍<<< 第一:本刷机包可卡刷可线刷,刷机包比较大的原因是采用同时兼容卡刷和线刷的格式,所以比较大第二:[卡刷方法]卡刷不要解压刷机包,直接传入手机后用 ...

  7. MyBatis 之一 简介

    什么是 MyBatis ? MyBatis 是支持定制化 SQL.存储过程以及高级映射的优秀的持久层框架.MyBatis 避免了几乎所有的 JDBC 代码和手动设置参数以及获取结果集.MyBatis ...

  8. 面向对象程序设计--Java语言第三周编程题:查找里程

    查找里程 题目内容: 下图为国内主要城市之间的公路里程: 你的程序要读入这样的一张表,然后,根据输入的两个城市的名称,给出这两个城市之间的里程. 注意:任何两个城市之间的里程都已经给出,不需要计算经第 ...

  9. HTML5网页如何调用浏览器APP的微信分享功能?

    if (/AppleWebKit.*Mobile/i.test(navigator.userAgent) || (/MIDP|SymbianOS|NOKIA|SAMSUNG|LG|NEC|TCL|Al ...

  10. enote笔记法的思考

    章节:enote笔记法的思考   why enote笔记法: key1)大脑喜欢颜色. 我们的大脑天生就喜欢颜色.对颜色很敏感,这是由我们人类过去的演化历程决定的. 你可以理解为,文字有了颜色,让这个 ...