#include <cstdio>
#include <iostream> using namespace std;
/*扩展gcd证明
由于当d = gcd(a,b)时;
d = d1 = gcd(b,a%b);
d1 = b1x1 + a%by1;
d = ax+by = b1x1+a%by1。又由于a%b = a - a%b*b;
上式变形能够有
b1x1 + (a-b*a/b)*y1 = a*y1 + b*(x1-a/b*y1);
也就是是说ax+by = a*y1 + b*(x1-a/b*y1);
所以当x=y1,y = x1-a/b*y1时。能够满足有d=ax+by;
*/
int fun(int a,int b,int d,int &x,int &y){
if(b == 0){
x = 1;
y = 0;
return a;
}
else{
d = fun(b,a%b,d,x,y);
int t;
t = x;
x = y;
y = t-a/b*y;
return d;
}
} int main(){
int a,b,d;
cin >>a >> b >> d;
int x,y;
fun(a,b,d,x,y);
printf("%d %d\n",x,y);
return 0;
}

扩展gcd求解二元不定方程及其证明的更多相关文章

  1. 模板—扩展GCD*2

    有必要重新学一下扩展GCD emmmm. 主要是扩展GCD求解线性同余方程$ax≡b (mod p)$. 1.方程有解的充分必要条件:b%gcd(a,p)=0. 证明: $ax-py=b$ 由于求解整 ...

  2. 扩展gcd codevs 1200 同余方程

    codevs 1200 同余方程 2012年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题目描述 Description 求关 ...

  3. Re:Exgcd解二元不定方程

    模拟又炸了,我死亡 $exgcd$(扩展欧几里德算法)用于求$ax+by=gcd(a,b)$中$x,y$的一组解,它有很多应用,比如解二元不定方程.求逆元等等,这里详细讲解一下$exgcd$的原理. ...

  4. 详解扩展欧几里得算法(扩展GCD)

    浅谈扩展欧几里得(扩展GCD)算法 本篇随笔讲解信息学奥林匹克竞赛中数论部分的扩展欧几里得算法.为了更好的阅读本篇随笔,读者最好拥有不低于初中二年级(这是经过慎重考虑所评定的等级)的数学素养.并且已经 ...

  5. 学习:数学----gcd及扩展gcd

    gcd及扩展gcd可以用来求两个数的最大公因数,扩展gcd甚至可以用来求一次不定方程ax+by=c的解   辗转相除法与gcd 假设有两个数a与b,现在要求a与b的最大公因数,我们可以设 a=b*q+ ...

  6. UESTC 288 青蛙的约会 扩展GCD

    设两只青蛙跳了t步,则此时A的坐标:x+mt,B的坐标:y+nt.要使的他们在同一点,则要满足: x+mt - (y+nt) = kL (p是整数) 化成: (n-m)t + kL = x-y (L ...

  7. 扩展gcd算法

    扩展gcd算法 神tm ×度搜索exgcd 打到exg的时候出来ex咖喱棒... 球方程\(ax+by=\gcd(a,b)\)的一个解 如果\(b=0\),那么\(\gcd(a,b)=a\),取\(x ...

  8. POJ - 2115 C Looooops(扩展欧几里德求解模线性方程(线性同余方程))

    d.对于这个循环, for (variable = A; variable != B; variable += C) statement; 给出A,B,C,求在k位存储系统下的循环次数. 例如k=4时 ...

  9. POJ 1061 青蛙的约会(扩展GCD求模线性方程)

    题目地址:POJ 1061 扩展GCD好难懂.. 看了半天.最终把证明什么的都看明确了. .推荐一篇博客吧(戳这里),讲的真心不错.. 直接上代码: #include <iostream> ...

随机推荐

  1. Perl字符集就是方括号(或称中括号)里一连串可能的字符,只匹配单一字符,该单一字符可以是字符集里的任何一个,“-”在字符集里有特殊含义:表示某个范围的字符。而字符集意外的连字符不具有特殊意义。

    Perl字符集就是方括号(或称中括号)里一连串可能的字符,只匹配单一字符,该单一字符可以是字符集里的任何一个,“-”在字符集里有特殊含义:表示某个范围的字符.而字符集意外的连字符不具有特殊意义.

  2. C# 后台调用存储过程

    例一丶返回集合 [WebMethod] public object RegisterMethod(string type, string username, string password, stri ...

  3. vue解决IOS10低版本白屏问题

    一.方案一 在build文件的webpack.prod.conf.js文件添加以下代码 new UglifyJsPlugin({ uglifyOptions: { compress: { warnin ...

  4. Linux C下变量和常量的存储的本质

    源代码 #cat main.c #include <stdio.h> int i = 100; int main(void) { func(); return 0; } #cat func ...

  5. [css或js控制图片自适应]

    [css或js控制图片自适应]图片自动适应大小是一个非常常用的功能,在进行制作的时候为了防止图片撑开容器而对图片的尺寸进行必要的控制,我们可不可以用CSS控制图片使它自适应大小呢?此个人博客想到了一个 ...

  6. 样例GeoQuiz应用开发 第2章

    先介绍一下MVC,Model View Controller,是软件架构中最常见的一种框架. 简单来说就是通过 controller 的控制去操作 model 层的数据,并且返回给 view 层展示, ...

  7. KBE实践——登录案例

    目录 服务器 ``` void maini(){ printf("hello world"); } ``` 最小资产库创建 entity配置 实体的Python实现 创建第一个空间 ...

  8. uva 10596 - Morning Walk

    Problem H Morning Walk Time Limit 3 Seconds Kamal is a Motashota guy. He has got a new job in Chitta ...

  9. [bzoj3531][Sdoi2014][旅行] (主席树+树链剖分)

    Description S国有N个城市,编号从1到N.城市间用N-1条双向道路连接,满足从一个城市出发可以到达其它所有城市.每个城市信仰不同的宗教,如飞天面条神教.隐形独角兽教.绝地教都是常见的信仰. ...

  10. python字典及相关操作

    1.字典 1.1.字典特性 字典是一种key-value的数据类型.key必须可hash,必须为不可变数据类型,且必须是唯一的:value可以存放任意多个值.可修改.可以不唯一:字典是无序的,通过ke ...