Given a picture consisting of black and white pixels, and a positive integer N, find the number of black pixels located at some specific row Rand column C that align with all the following rules:

  1. Row R and column C both contain exactly N black pixels.
  2. For all rows that have a black pixel at column C, they should be exactly the same as row R

The picture is represented by a 2D char array consisting of 'B' and 'W', which means black and white pixels respectively.

Example:

Input:
[['W', 'B', 'W', 'B', 'B', 'W'],
['W', 'B', 'W', 'B', 'B', 'W'],
['W', 'B', 'W', 'B', 'B', 'W'],
['W', 'W', 'B', 'W', 'B', 'W']] N = 3
Output: 6
Explanation: All the bold 'B' are the black pixels we need (all 'B's at column 1 and 3).
0 1 2 3 4 5 column index
0 [['W', 'B', 'W', 'B', 'B', 'W'],
1 ['W', 'B', 'W', 'B', 'B', 'W'],
2 ['W', 'B', 'W', 'B', 'B', 'W'],
3 ['W', 'W', 'B', 'W', 'B', 'W']]
row index Take 'B' at row R = 0 and column C = 1 as an example:
Rule 1, row R = 0 and column C = 1 both have exactly N = 3 black pixels.
Rule 2, the rows have black pixel at column C = 1 are row 0, row 1 and row 2. They are exactly the same as row R = 0.

Note:

  1. The range of width and height of the input 2D array is [1,200].

本题读了好几遍题目也没有怎么读懂,有点小难了,那两个限制条件的大致意思是,第一,某一点为B的点,它的行和列的B的个数都是N,第二个意思是,每一行里面出现的B,B的整个列为B的行必须和该B的行的字符顺序是一样的,代码如下:

 public class Solution {
public int findBlackPixel(char[][] picture, int N) {
int row = picture.length;
int col = picture[0].length;
int[] colcount =new int[col];
Map<String,Integer> map = new HashMap<>();
for(int i=0;i<row;i++){
String s = scanRow(picture,N,colcount,i);
if(s.length()!=0)
map.put(s,map.getOrDefault(s,0)+1);
}
int res = 0;
for(String key:map.keySet()){
if(map.get(key)==N){
for(int i=0;i<col;i++){
if(key.charAt(i)=='B'&&colcount[i]==N){
res+=N;
}
}
}
}
return res; }
public String scanRow(char[][] picture,int N,int[] colcount,int row){
StringBuilder sb = new StringBuilder();
int col = picture[0].length;
int count = 0;
for(int i=0;i<col;i++){
if(picture[row][i]=='B'){
count++;
colcount[i]++;
}
sb.append(picture[row][i]);
}
if(count==N) return sb.toString();
else return "";
}
}

533. Lonely Pixel II的更多相关文章

  1. [LeetCode] 533. Lonely Pixel II 孤独的像素 II

    Given a picture consisting of black and white pixels, and a positive integer N, find the number of b ...

  2. LeetCode 533. Lonely Pixel II (孤独的像素之二) $

    Given a picture consisting of black and white pixels, and a positive integer N, find the number of b ...

  3. [LeetCode] Lonely Pixel II 孤独的像素之二

    Given a picture consisting of black and white pixels, and a positive integer N, find the number of b ...

  4. [LeetCode] 531. Lonely Pixel I 孤独的像素 I

    Given a picture consisting of black and white pixels, find the number of black lonely pixels. The pi ...

  5. [LeetCode] Lonely Pixel I 孤独的像素之一

    Given a picture consisting of black and white pixels, find the number of black lonely pixels. The pi ...

  6. 531. Lonely Pixel I

    Given a picture consisting of black and white pixels, find the number of black lonely pixels. The pi ...

  7. LeetCode 531. Lonely Pixel I

    原题链接在这里:https://leetcode.com/problems/lonely-pixel-i/ 题目: Given a picture consisting of black and wh ...

  8. LeetCode 533----Lonely Pixel II

    问题描述 Given a picture consisting of black and white pixels, and a positive integer N, find the number ...

  9. LeetCode Questions List (LeetCode 问题列表)- Java Solutions

    因为在开始写这个博客之前,已经刷了100题了,所以现在还是有很多题目没有加进来,为了方便查找哪些没加进来,先列一个表可以比较清楚的查看,也方便给大家查找.如果有哪些题目的链接有错误,请大家留言和谅解, ...

随机推荐

  1. WINDOWS-基础:WINDOWS常用API

    1.窗口信息 //MS 为我们提供了打开特定桌面和枚举桌面窗口的函数. hDesk=OpenDesktop(lpszDesktop,,FALSE,DESKTOP_ENUMERATE); //打开我们默 ...

  2. k8s master init and add node

    目录 一. add google apt-key 二. k8s master init 三. k8s node add to master cluster(use this command when ...

  3. 高德定位腾讯定位在APP上无法开启定位权限的解决方案

    [备注]公司项目中遇到的问题,如果你在团队工作其中定有不少配合方面的问题,其中的思路是可以借鉴的,因为这也许正是你们现在遇到的问题,总结的不好的地方还请多多指教 因为项目需求的确定,定位成了必不可少的 ...

  4. WebAssembly MDN简单使用

    MDN 就是通过编译器编译完成c后生成的胶水代码 引入js 就能直接调用定义在c或者c++中的函数了 c代码如下: #include <stdio.h> #include <stdl ...

  5. Educational Codeforces Round 40千名记

    人生第二场codeforces.然而遇上了Education场这种东西 Educational Codeforces Round 40 下午先在家里睡了波觉,起来离开场还有10分钟. 但是突然想起来还 ...

  6. 【Java_多线程并发编程】基础篇——synchronized关键字

    1. synchronized同步锁的原理 当我们调用某对象的synchronized方法或代码块时,就获取了该对象的同步锁.例如,synchronized(obj)就获取了“obj这个对象”的同步锁 ...

  7. DocDokuPLM 2.5安装

    安装记录:(大部分是环境安装和配置) 未完待续.

  8. element使用心得

    Table Table 常用属性解释 数据过滤,filter过滤器 <el-table-column width="200" show-overflow-tooltip la ...

  9. verilog random使用

    “$random函数调用时返回一个32位的随机数,它是一个带符号的整形数...”,并给出了一个例子: _________________________________________________ ...

  10. fshc之请求仲裁机制的代码分析

    always@(posedge spi_clk or negedge spiclk_rst_n) begin if(~spiclk_rst_n) arbiter2cache_ack_r <='b ...