题目描述

丁丁最近沉迷于一个数字游戏之中。这个游戏看似简单,但丁丁在研究了许多天之后却发觉原来在简单的规则下想要赢得这个游戏并不那么容易。游戏是这样的,在你面前有一圈整数(一共n个),你要按顺序将其分为m个部分,各部分内的数字相加,相加所得的m个结果对10取模后再相乘,最终得到一个数k。游戏的要求是使你所得的k最大或者最小。

例如,对于下面这圈数字(n=4,m=2):

要求最小值时,((2-1) mod 10)×((4+3) mod 10)=1×7=7,要求最大值时,为((2+4+3) mod 10)×(-1 mod 10)=9×9=81。特别值得注意的是,无论是负数还是正数,对10取模的结果均为非负值。

丁丁请你编写程序帮他赢得这个游戏。

输入输出格式

输入格式:

输入文件第一行有两个整数,n(1≤n≤50)和m(1≤m≤9)。以下n行每行有个整数,其绝对值不大于104,按顺序给出圈中的数字,首尾相接。

输出格式:

输出文件有两行,各包含一个非负整数。第一行是你程序得到的最小值,第二行是最大值。

输入输出样例

输入样例#1:

4 2
4
3
-1
2

输出样例#1:

7
81

dp方程表示从第i个到第j个数中取k段的最大值或最小值。状态转移方程

具体看代码

分段点,枚举两段分别所取的段数,取最值。

#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
#define INF 0x7fffffff
inline int mod(int x) {
return (x%10+10)%10;
}
int n,m;
int a[1000],sum[1000];
int dp[300][300][99][2];
int st[300][300];
int main() {
scanf("%d%d",&n,&m);
for(int i=1;i<=n;++i) {
scanf("%d",a+i);a[n+i]=a[i];
}
n<<=1;
for(int i=1;i<=n;++i) {
sum[i]=a[i]+sum[i-1];
}
for(int i=0;i<130;++i)
for(int j=0;j<130;++j)
for(int k=0;k<130;++k) {
dp[i][j][k][1]=INF;
}
for(int i=1;i<=n;i++)
for(int j=i;j<=n;j++) {
dp[i][j][1][1]=dp[i][j][1][0]=st[i][j]=((sum[j]-sum[i-1])%10+10)%10;
}
for(int t=2;t<=m;++t) {
for(int i=1;i<=n;++i) {
for(int j=i;j<=n;++j) {
for(int k=i;k<j;++k) {
dp[i][j][t][0]=max(dp[i][j][t][0],dp[i][k][t-1][0]*st[k+1][j]);
if(dp[i][k][t-1][1]<INF)dp[i][j][t][1]=min(dp[i][j][t][1],dp[i][k][t-1][1]*st[k+1][j]);
}
}
}
}
n>>=1;
int maxans=-10000,minans=0x7fffffff;
for(int i=1;i<=n;++i)
{
maxans=max(maxans,dp[i][i+n-1][m][0]);
//printf("%d\n",dp[i][i+n-1][m][1]);
minans=min(minans,dp[i][i+n-1][m][1]);
}
printf("%d\n%d\n",minans,maxans);
return 0;
}
/*
4 2
4
3
-1
2
*/

luogu P1043 数字游戏的更多相关文章

  1. P1043 数字游戏

    P1043 数字游戏 题目描述 丁丁最近沉迷于一个数字游戏之中.这个游戏看似简单,但丁丁在研究了许多天之后却发觉原来在简单的规则下想要赢得这个游戏并不那么容易.游戏是这样的,在你面前有一圈整数(一共n ...

  2. 洛谷——P1043 数字游戏

    https://www.luogu.org/problem/show?pid=1043 题目描述 丁丁最近沉迷于一个数字游戏之中.这个游戏看似简单,但丁丁在研究了许多天之后却发觉原来在简单的规则下想要 ...

  3. 洛谷P1043 数字游戏

    题目描述 丁丁最近沉迷于一个数字游戏之中.这个游戏看似简单,但丁丁在研究了许多天之后却发觉原来在简单的规则下想要赢得这个游戏并不那么容易.游戏是这样的,在你面前有一圈整数(一共n个),你要按顺序将其分 ...

  4. 洛谷 P1043 数字游戏 区间DP

    题目描述 丁丁最近沉迷于一个数字游戏之中.这个游戏看似简单,但丁丁在研究了许多天之后却发觉原来在简单的规则下想要赢得这个游戏并不那么容易.游戏是这样的,在你面前有一圈整数(一共n个),你要按顺序将其分 ...

  5. 洛谷 P1043 数字游戏(区间dp)

    题目链接:https://www.luogu.com.cn/problem/P1043 这道题与石子合并很类似,都是把一个环强制改成一个链,然后在链上做区间dp 要初始化出1~2n的前缀和,方便在O( ...

  6. 洛谷P1043数字游戏

    题目 区间DP,将\(maxn[i][j][k]\)表示为i到j区间内分为k个区间所得到的最大值,\(minn\)表示最小值. 然后可以得到状态转移方程: \[maxn[i][j][k]= max(m ...

  7. 洛谷 P1043 数字游戏

    题目传送门 解题思路: 跟石子合并差不多,区间DP(环形),用f[i][j][s]表示从i到j分成s段所能获得的最大答案,枚举断点k,则f[i][j][s] = min(f[i][j][s],f[i] ...

  8. 「区间DP」「洛谷P1043」数字游戏

    「洛谷P1043」数字游戏 日后再写 代码 /*#!/bin/sh dir=$GEDIT_CURRENT_DOCUMENT_DIR name=$GEDIT_CURRENT_DOCUMENT_NAME ...

  9. P1427 小鱼的数字游戏 洛谷

    https://www.luogu.org/problem/show?pid=1427 题目描述 小鱼最近被要求参加一个数字游戏,要求它把看到的一串数字(长度不一定,以0结束,最多不超过100个,数字 ...

随机推荐

  1. Spring框架中的aop操作之二 通过配置文件实现增强

    aop表达式写法 配置文件代码: <?xml version="1.0" encoding="UTF-8"?> <beans xmlns=&q ...

  2. React项目搭建及依赖安装

    一.前提 首先保证node.js已安装完成... 安装完成后,打开cmd命令行,输入 node -v 和 npm -v 来查看版本号,如果显示则安装完成. 二.安装react脚手架 在cmd命令行中输 ...

  3. 删除mysql主从

    在创建数据库主从配置后,若想删除数据库的主从服务可根据以下步骤来删除数据库主从 1.停止slave服务器的主从同步   为了防止主从数据不同步,需要先停止slave上的同步服务, STOP SLAVE ...

  4. boot_mem分配器

    #define alloc_bootmem_low_pages(x) \ __alloc_bootmem_low(x, PAGE_SIZE, ) void * __init __alloc_bootm ...

  5. failed to execute goal org.apache.maven.plugins:maven-archetype-plugin错误解决方法

    使用maven创建project时碰到如下错误: D:\codes\JSF>mvn archetype:create -DgroupId=com.tutorialspoint.test -Dar ...

  6. PHP 和 AJAX MySQL

    AJAX 可用来与数据库进行交互式通信. AJAX 数据库实例 在下面的 AJAX 实例中,我们将演示网页如何使用 AJAX 技术从 MySQL 数据库中读取信息. 在下拉列表中选择一个名字 (测试说 ...

  7. C#学习基础概念二十五问

    C#学习基础概念二十五问 1.静态变量和非静态变量的区别?2.const 和 static readonly 区别?3.extern 是什么意思?4.abstract 是什么意思?5.internal ...

  8. 【05】project board

    GitHub 上的 project board 我总是用 Jira 做大项目,独立项目用 Trello,这两者我都很喜欢. 后来我知道,GitHub 也有类似的 project board: 我个人为 ...

  9. cf898d Alarm Clock

    区间上有 \(n\) 个点,问你为达到目的:长度为 \(m\) 的区间内点的个数都 $ < k$需要去掉多少个点. 贪心.每个区间我们总是去掉最后的,也就是说除非万不得已我们是不会去掉点的. 队 ...

  10. [转]Python 之 使用 PIL 库做图像处理

    Python 之 使用 PIL 库做图像处理 1. 简介. 图像处理是一门应用非常广的技术,而拥有非常丰富第三方扩展库的 Python 当然不会错过这一门盛宴.PIL (Python Imaging ...