遍历

图的遍历,所谓遍历,即是对结点的访问。一个图有那么多个结点,如何遍历这些结点,需要特定策略,一般有两种访问策略:

  • 深度优先遍历

  • 广度优先遍历

深度优先

深度优先遍历,从初始访问结点出发,我们知道初始访问结点可能有多个邻接结点,深度优先遍历的策略就是首先访问第一个邻接结点,然后再以这个被访问的邻接结点作为初始结点,访问它的第一个邻接结点。总结起来可以这样说:每次都在访问完当前结点后首先访问当前结点的第一个邻接结点。

我们从这里可以看到,这样的访问策略是优先往纵向挖掘深入,而不是对一个结点的所有邻接结点进行横向访问。

具体算法表述如下:

  1. 访问初始结点v,并标记结点v为已访问。

  2. 查找结点v的第一个邻接结点w。

  3. 若w存在,则继续执行4,否则算法结束。

  4. 若w未被访问,对w进行深度优先遍历递归(即把w当做另一个v,然后进行步骤123)。

  5. 查找结点v的w邻接结点的下一个邻接结点,转到步骤3。

例如下图,其深度优先遍历顺序为 1->2->4->8->5->3->6->7

广度优先

类似于一个分层搜索的过程,广度优先遍历需要使用一个队列以保持访问过的结点的顺序,以便按这个顺序来访问这些结点的邻接结点。

具体算法表述如下:

  1. 访问初始结点v并标记结点v为已访问。

  2. 结点v入队列

  3. 当队列非空时,继续执行,否则算法结束。

  4. 出队列,取得队头结点u。

  5. 查找结点u的第一个邻接结点w。

  6. 若结点u的邻接结点w不存在,则转到步骤3;否则循环执行以下三个步骤:

    1). 若结点w尚未被访问,则访问结点w并标记为已访问。
    2). 结点w入队列
    3). 查找结点u的继w邻接结点后的下一个邻接结点w,转到步骤6。

如下图,其广度优先算法的遍历顺序为:1->2->3->4->5->6->7->8

Java实现

前面一文《图的理解:存储结构与邻接矩阵的Java实现》已经给出了邻接矩阵图模型类 AMWGraph.java,在原先类的基础上增加了两个遍历的函数,分别是 depthFirstSearch() 和 broadFirstSearch() 分别代表深度优先和广度优先遍历。

import java.util.ArrayList;
import java.util.LinkedList;
/**
* @description 邻接矩阵模型类
* @author beanlam
* @time 2015.4.17
*/
public class AMWGraph {
private ArrayList vertexList;//存储点的链表
private int[][] edges;//邻接矩阵,用来存储边
private int numOfEdges;//边的数目 public AMWGraph(int n) {
//初始化矩阵,一维数组,和边的数目
edges=new int[n][n];
vertexList=new ArrayList(n);
numOfEdges=0;
} //得到结点的个数
public int getNumOfVertex() {
return vertexList.size();
} //得到边的数目
public int getNumOfEdges() {
return numOfEdges;
} //返回结点i的数据
public Object getValueByIndex(int i) {
return vertexList.get(i);
} //返回v1,v2的权值
public int getWeight(int v1,int v2) {
return edges[v1][v2];
} //插入结点
public void insertVertex(Object vertex) {
vertexList.add(vertexList.size(),vertex);
} //插入结点
public void insertEdge(int v1,int v2,int weight) {
edges[v1][v2]=weight;
numOfEdges++;
} //删除结点
public void deleteEdge(int v1,int v2) {
edges[v1][v2]=0;
numOfEdges--;
} //得到第一个邻接结点的下标
public int getFirstNeighbor(int index) {
for(int j=0;j<vertexList.size();j++) {
if (edges[index][j]>0) {
return j;
}
}
return -1;
} //根据前一个邻接结点的下标来取得下一个邻接结点
public int getNextNeighbor(int v1,int v2) {
for (int j=v2+1;j<vertexList.size();j++) {
if (edges[v1][j]>0) {
return j;
}
}
return -1;
} //私有函数,深度优先遍历
private void depthFirstSearch(boolean[] isVisited,int i) {
//首先访问该结点,在控制台打印出来
System.out.print(getValueByIndex(i)+" ");
//置该结点为已访问
isVisited[i]=true; int w=getFirstNeighbor(i);//
while (w!=-1) {
if (!isVisited[w]) {
depthFirstSearch(isVisited,w);
}
w=getNextNeighbor(i, w);
}
} //对外公开函数,深度优先遍历,与其同名私有函数属于方法重载
public void depthFirstSearch() {
for(int i=0;i<getNumOfVertex();i++) {
//因为对于非连通图来说,并不是通过一个结点就一定可以遍历所有结点的。
if (!isVisited[i]) {
depthFirstSearch(isVisited,i);
}
}
} //私有函数,广度优先遍历
private void broadFirstSearch(boolean[] isVisited,int i) {
int u,w;
LinkedList queue=new LinkedList(); //访问结点i
System.out.print(getValueByIndex(i)+" ");
isVisited[i]=true;
//结点入队列
queue.addlast(i);
while (!queue.isEmpty()) {
u=((Integer)queue.removeFirst()).intValue();
w=getFirstNeighbor(u);
while(w!=-1) {
if(!isVisited[w]) {
//访问该结点
System.out.print(getValueByIndex(w)+" ");
//标记已被访问
isVisited[w]=true;
//入队列
queue.addLast(w);
}
//寻找下一个邻接结点
w=getNextNeighbor(u, w);
}
}
} //对外公开函数,广度优先遍历
public void broadFirstSearch() {
for(int i=0;i<getNumOfVertex();i++) {
if(!isVisited[i]) {
broadFirstSearch(isVisited, i);
}
}
}
}

  

 

上面的public声明的depthFirstSearch()和broadFirstSearch()函数,是为了应对当该图是非连通图的情况,如果是非连通图,那么只通过一个结点是无法完全遍历所有结点的。

下面根据上面用来举例的图来构造测试类:

public class TestSearch {

    public static void main(String args[]) {
int n=8,e=9;//分别代表结点个数和边的数目
String labels[]={"1","2","3","4","5","6","7","8"};//结点的标识
AMWGraph graph=new AMWGraph(n);
for(String label:labels) {
graph.insertVertex(label);//插入结点
}
//插入九条边
graph.insertEdge(0, 1, 1);
graph.insertEdge(0, 2, 1);
graph.insertEdge(1, 3, 1);
graph.insertEdge(1, 4, 1);
graph.insertEdge(3, 7, 1);
graph.insertEdge(4, 7, 1);
graph.insertEdge(2, 5, 1);
graph.insertEdge(2, 6, 1);
graph.insertEdge(5, 6, 1);
graph.insertEdge(1, 0, 1);
graph.insertEdge(2, 0, 1);
graph.insertEdge(3, 1, 1);
graph.insertEdge(4, 1, 1);
graph.insertEdge(7, 3, 1);
graph.insertEdge(7, 4, 1);
graph.insertEdge(6, 2, 1);
graph.insertEdge(5, 2, 1);
graph.insertEdge(6, 5, 1); System.out.println("深度优先搜索序列为:");
graph.depthFirstSearch();
System.out.println();
System.out.println("广度优先搜索序列为:");
graph.broadFirstSearch();
}
}

  

 

运行后控制台输出如下:

图的理解:深度优先和广度优先遍历及其 Java 实现的更多相关文章

  1. 存储结构与邻接矩阵,深度优先和广度优先遍历及Java实现

    如果看完本篇博客任有不明白的地方,可以去看一下<大话数据结构>的7.4以及7.5,讲得比较易懂,不过是用C实现 下面内容来自segmentfault 存储结构 要存储一个图,我们知道图既有 ...

  2. 图的深度优先和广度优先遍历(图以邻接表表示,由C++面向对象实现)

    学习了图的深度优先和广度优先遍历,发现不管是教材还是网上,大都为C语言函数式实现,为了加深理解,我以C++面向对象的方式把图的深度优先和广度优先遍历重写了一遍. 废话不多说,直接上代码: #inclu ...

  3. JavaScript实现树深度优先和广度优先遍历搜索

    1.前置条件 我们提前构建一棵树,类型为 Tree ,其节点类型为 Note.这里我们不进行过多的实现,简单描述下 Note 的结构: class Node{ constructor(data){ t ...

  4. C语言实现数据结构的邻接矩阵----数组生成矩阵、打印、深度优先遍历和广度优先遍历

    写在前面 图的存储结构有两种:一种是基于二维数组的邻接矩阵表示法. 另一种是基于链表的的邻接表表示法. 在邻接矩阵中,可以如下表示顶点和边连接关系: 说明: 将顶点对应为下标,根据横纵坐标将矩阵中的某 ...

  5. 多级树的深度遍历与广度遍历(Java实现)

    目录 多级树的深度遍历与广度遍历 节点模型 深度优先遍历 广度优先遍历 多级树的深度遍历与广度遍历 深度优先遍历与广度优先遍历其实是属于图算法的一种,多级树可以看做是一种特殊的图,所以多级数的深/广遍 ...

  6. 【PHP数据结构】图的遍历:深度优先与广度优先

    在上一篇文章中,我们学习完了图的相关的存储结构,也就是 邻接矩阵 和 邻接表 .它们分别就代表了最典型的 顺序存储 和 链式存储 两种类型.既然数据结构有了,那么我们接下来当然就是学习对这些数据结构的 ...

  7. 图的存储,搜索,遍历,广度优先算法和深度优先算法,最小生成树-Java实现

    1)用邻接矩阵方式进行图的存储.如果一个图有n个节点,则可以用n*n的二维数组来存储图中的各个节点关系. 对上面图中各个节点分别编号,ABCDEF分别设置为012345.那么AB AC AD 关系可以 ...

  8. C++编程练习(9)----“图的存储结构以及图的遍历“(邻接矩阵、深度优先遍历、广度优先遍历)

    图的存储结构 1)邻接矩阵 用两个数组来表示图,一个一维数组存储图中顶点信息,一个二维数组(邻接矩阵)存储图中边或弧的信息. 2)邻接表 3)十字链表 4)邻接多重表 5)边集数组 本文只用代码实现用 ...

  9. 【图的遍历】广度优先遍历(DFS)、深度优先遍历(BFS)及其应用

    无向图满足约束条件的路径 •[目的]:掌握深度优先遍历算法在求解图路径搜索问题的应用 [内容]:编写一个程序,设计相关算法,从无向图G中找出满足如下条件的所有路径:  (1)给定起点u和终点v.  ( ...

随机推荐

  1. 【Java TCP/IP Socket】UDP Socket(含代码)

    UDP的Java支持 UDP协议提供的服务不同于TCP协议的端到端服务,它是面向非连接的,属不可靠协议,UDP套接字在使用前不需要进行连接.实际上,UDP协议只实现了两个功能: 1)在IP协议的基础上 ...

  2. Zabbix监控Mongo

    安装Zabbix-agent # groupadd zabbix # useradd -g zabbix zabbix # yum -y install gcc mysql-community-dev ...

  3. 常用linux系统监控命令

    一.内存监控 监控内存的使用状态是非常重要的,通过监控有助于了解内存的使用状态,比如内存占用是否正常,内存是否紧缺等等,监控内存最常使用的命令有free.vmstat.top等 1.1 free $ ...

  4. 腾讯云图片鉴黄集成到C# SQL Server 怎么在分页获取数据的同时获取到总记录数 sqlserver 操作数据表语句模板 .NET MVC后台发送post请求 百度api查询多个地址的经纬度的问题 try{}里有一个 return 语句,那么紧跟在这个 try 后的 finally {}里的 code 会 不会被执行,什么时候被执行,在 return 前还是后? js获取某个日期

    腾讯云图片鉴黄集成到C#   官方文档:https://cloud.tencent.com/document/product/641/12422 请求官方API及签名的生成代码如下: public c ...

  5. Distributed Management Task Force----分布式管理任务组

    http://baike.baidu.com/link?url=Y9HGLs8Qj6pXbbgY6xPdfiGDsQO8Eu1e80B4giQtQ_hAfGNF59byxnLoERYri4Duw7Gw ...

  6. 民大OJ 1668 追杀系列第二发

    追杀系列第二发 时间限制(普通/Java) : 1000 MS/ 3000 MS          运行内存限制 : 65536 KByte 总提交 : 57            测试通过 : 16 ...

  7. ubuntu 用shell脚本实现将当前文件夹下全部文件夹中的某一类文件复制到同一文件夹下

    当前文件夹下有一些文件和文件夹,当中每一个文件夹里都有若干.txt文件. 如今要求在当前文件夹创建一个新文件夹all,且将那些文件夹全部.txt文件 都复制到文件夹all.在ubuntu12.04的s ...

  8. Python 模块的安装与使用

    我们知道使用函数不仅减轻了工作量,而且使代码更加简洁,更加的易于维护.但如果在另一个文件中,我们希望使用上一个文件中定义的某个函数,我们应该怎么办呢?我们需要重新将上一个函数再次实现一遍吗?而且,当我 ...

  9. POJ--2284--That Nice Euler Circuit【平面图欧拉公式】

    链接:id=2284">http://poj.org/problem?id=2284 题意:一个自己主动绘图的机器在纸上(无限大)绘图,笔尖从不离开纸,有n个指令,每一个指令是一个坐标 ...

  10. strsep strpbrk

    #include <stdio.h> #include <string.h> int main(void) { char s[] = "aa,bb,cc.11,22, ...