RSA的共模攻击
实验吧题目:http://www.shiyanbar.com/ctf/1834
参考:http://hebin.me/2017/09/07/%e8%a5%bf%e6%99%aectf-strength/
首先说一下RSA的工作原理,RSA涉及一下几个参数:
- 要加密的信息为m,加密后的信息为c;
- 模n,负责计算出两个质数p和q,p和q计算欧拉函数值φ(n);
- 欧拉函数值φ(n),φ(n)=(p-1)(q-1);
- 公钥参数e和私钥参数d,可由欧拉函数值计算出,ed≡1 (mod φ(n));
- 加密:me ≡ c (mod n)
- 解密:cd ≡ m (mod n)
当n不变的情况下,知道n,e1,e2,c1,c2 可以在不知道d1,d2的情况下,解出m。
首先假设,e1,e2互质
即
gcd(e1,e2)=1
此时则有
e1*s1+e2*s2 = 1
式中,s1、s2皆为整数,但是一正一负。
通过扩展欧几里德算法,我们可以得到该式子的一组解(s1,s2),假设s1为正数,s2为负数.
因为
c1 = m^e1%n c2 = m^e2%n
所以
(c1^s1*c2^s2)%n = ((m^e1%n)^s1*(m^e2%n)^s2)%n
根据模运算性质,可以化简为
(c1^s1*c2^s2)%n = ((m^e1)^s1*(m^e2)^s2)%n
即
(c1^s1*c2^s2)%n = (m^(e1^s1+e2^s2))%n
又前面提到
e1*s1+e2*s2 = 1
所以
(c1^s1*c2^s2)%n = (m^(1))%n
(c1^s1*c2^s2)%n = m^%n
即
c1^s1*c2^s2 = m
# 找出互质的两个e
# -*- coding: utf-8 -*- from libnum import n2s,s2n
from gmpy2 import invert
# 欧几里得算法
def egcd(a, b):
if a == 0:
return (b, 0, 1)
else:
g, y, x = egcd(b % a, a)
return (g, x - (b // a) * y, y) def main():
n = 116547141139745534253172934123407786743246513874292261984447028928003798881819567221547298751255790928878194794155722543477883428672342894945552668904410126460402501558930911637857436926624838677630868157884406020858164140754510239986466552869866296144106255873879659676368694043769795604582888907403261286211
c1 = 78552378607874335972488545767374401332953345586323262531477516680347117293352843468592985447836452620945707838830990843415342047337735534418287912723395148814463617627398248738969202758950481027762126608368555442533803610260859075919831387641824493902538796161102236794716963153162784732179636344267189394853
c2 = 98790462909782651815146615208104450165337326951856608832305081731255876886710141821823912122797166057063387122774480296375186739026132806230834774921466445172852604926204802577270611302881214045975455878277660638731607530487289267225666045742782663867519468766276566912954519691795540730313772338991769270201
e1 = 1804229351
e2 = 17249876309
s = egcd(e1, e2)
s1 = s[1]
s2 = s[2]
# 求模反元素
if s1<0:
s1 = - s1
c1 = invert(c1, n)
elif s2<0:
s2 = - s2
c2 = invert(c2, n) m = pow(c1,s1,n)*pow(c2,s2,n) % n
print n2s(m) if __name__ == '__main__':
main()
m = c1^s1*c2^s2 mod N
e1=1804229351
e2=17249876309
找到e1*s1+e2*s2=1的数(s1和s2异号)
s1=-49585666
s2=30337985
m = c1^s1*c2^s2 mod N
而在数论模运算中,要求一个数的负数次幂,与常规方法并不一样。
比如此处要求c2的s2次幂,就要先计算c2的模反元素c2r,然后求c2r的-s2次幂
找到s1的模反元素s1’=59221997946241237795280012961437755364319177847020996196260345560126624777905328671070619808742865206317231208856631213568682080308815472681816780528704149634900198556309885979020516076840693722669944415333783759008733319693789770248367473172650278434329453755225555333827588704035092685296296296058289109176
求m得到:m=11859814987468385682904193929732856121563109146807186957694593421160017639466355
RSA的共模攻击的更多相关文章
- [CTF] RSA共模攻击
from gmpy2 import * import libnum n = 0x00b0bee5e3e9e5a7e8d00b493355c618fc8c7d7d03b82e409951c182f398 ...
- RSA进阶之共模攻击
适用场景: 同一个n,对相同的m进行了加密,e取值不一样. e1和e2互质,gcd(e1,e2)=1 如果满足上述条件,那么就可以在不分解n的情况下求解m 原理 复杂的东西简单说: 如果gcd(e1, ...
- RSA共模攻击
在安恒月赛中碰到一道密码学方向的ctf题 附上源码 from flag import flag from Crypto.Util.number import * p=getPrime(1024) q= ...
- RSA简介(二)——模幂算法
RSA最终加密.解密都要用到模乘的幂运算,简称模幂运算. 回忆一下RSA,从明文A到B B=Ae1%N 对B解密,就是 A=Be2%N 其中,一般来说,加密公钥中的e1一般会比较小,取65537居多, ...
- RSA进阶之维纳攻击(wiener-attack )
维纳攻击: 场景:e很大 例题: 第七届山东网络安全技能大赛 链接:https://pan.baidu.com/s/1IRInw3pB7SQfp3MxRJW17A 提取码:lcn3 e很大,妥了,维纳 ...
- 强网杯2018 - nextrsa - Writeup
强网杯2018 - nextrsa - Writeup 原文地址:M4x@10.0.0.55 所有代码均已上传至我的github 俄罗斯套娃一样的rsa题目,基本把我见过的rsa套路出了一遍,值得记录 ...
- 简单RSA攻击方式
RSA攻击方式总结 1.模数分解 1).解题思路 a).找到RSA算法中的公钥(e,n) b).通过n来找到对应的p和q,然后求得φ(n) c).通过gmpy2.invert或者gmpy2 ...
- 公钥密码RSA算法记录
介绍: RSA算法是1978年由 R.Rivest.A.Shamir.L.Adleman提出的一种用数论构造的.也是迄今为止理论上最为成熟.完善的公钥密码体,该体制已得到广泛的应用. 算法描述: 1. ...
- Given d and e, factorize N to attack RSA
题目如下: RSA算法的使用一般要求每个不同的用户有一个独立的模数N.有天,Bob脑洞大开,认为似乎没有必要这样做.只需要一个模数N,然后给不同的用户分发不同的e和d就好了.可惜这种做法有严重的安全漏 ...
随机推荐
- bzoj 1702: [Usaco2007 Mar]Gold Balanced Lineup 平衡的队列【hash】
我%&&--&()&%????? 双模hashWA,unsigned long longAC,而且必须判断hash出来的数不能为0???? 我可能学了假的hash 这个 ...
- 清北考前刷题day1早安
立方数(cubic) Time Limit:1000ms Memory Limit:128MB 题目描述 LYK定义了一个数叫“立方数”,若一个数可以被写作是一个正整数的3次方,则这个数就是立方数 ...
- P4727 [HNOI2009]图的同构记数
传送门 如果我们把选出子图看成选出边,进而看成对边黑白染色,那么就是上一题的弱化版了,直接复制过来然后令\(m=2\)即可 不过直接交上去会T,于是加了几发大力优化 不知为何华丽的被小号抢了rank2 ...
- Java并发编程系列之CyclicBarrier详解
简介 jdk原文 A synchronization aid that allows a set of threads to all wait for each other to reach a co ...
- mysql之distinct
记录一下这几天看mysql必知必会的小知识点: 关于mysql查询不同的行 比如记录表中 查询有多少个城市 可能查出很多城市 可以用distinct 来解决这个问题 SELECT DISTINCT c ...
- self , static 都是何方神圣?
前言: php中 this 用于代指 对象, 而代指类的却有3个:self , static , parent self , static , parrent 既然都能代指类,那么他们之间又有哪些区 ...
- 递推DP HDOJ 5389 Zero Escape
题目传送门 /* 题意:把N个数分成两组,一组加起来是A,一组加起来是B,1<=A,B<=9,也可以全分到同一组.其中加是按照他给的规则加,就是一位一位加,超过一位数了再拆分成一位一位加. ...
- DP BestCoder Round #50 (div.2) 1003 The mook jong
题目传送门 /* DP:这题赤裸裸的dp,dp[i][1/0]表示第i块板放木桩和不放木桩的方案数.状态转移方程: dp[i][1] = dp[i-3][1] + dp[i-3][0] + 1; dp ...
- focus、click、blur、display、float、border、absolute、relative、fixed
onfocus:获取焦点,点击时,按着不放 onclick:点击松开之后,未点击其他处 onblur:点击松开之后,又点击其他处 display:block,none,inline block:单独占 ...
- swing jTable排序问题(点击表头排序)
1.JDK6自带排序实现: tableName.setAutoCreateRowSorter(true); 2.其实界面设计中勾选一个属性就搞定了: .