RSA的共模攻击
实验吧题目:http://www.shiyanbar.com/ctf/1834
参考:http://hebin.me/2017/09/07/%e8%a5%bf%e6%99%aectf-strength/
首先说一下RSA的工作原理,RSA涉及一下几个参数:
- 要加密的信息为m,加密后的信息为c;
- 模n,负责计算出两个质数p和q,p和q计算欧拉函数值φ(n);
- 欧拉函数值φ(n),φ(n)=(p-1)(q-1);
- 公钥参数e和私钥参数d,可由欧拉函数值计算出,ed≡1 (mod φ(n));
- 加密:me ≡ c (mod n)
- 解密:cd ≡ m (mod n)
当n不变的情况下,知道n,e1,e2,c1,c2 可以在不知道d1,d2的情况下,解出m。
首先假设,e1,e2互质
即
gcd(e1,e2)=1
此时则有
e1*s1+e2*s2 = 1
式中,s1、s2皆为整数,但是一正一负。
通过扩展欧几里德算法,我们可以得到该式子的一组解(s1,s2),假设s1为正数,s2为负数.
因为
c1 = m^e1%n c2 = m^e2%n
所以
(c1^s1*c2^s2)%n = ((m^e1%n)^s1*(m^e2%n)^s2)%n
根据模运算性质,可以化简为
(c1^s1*c2^s2)%n = ((m^e1)^s1*(m^e2)^s2)%n
即
(c1^s1*c2^s2)%n = (m^(e1^s1+e2^s2))%n
又前面提到
e1*s1+e2*s2 = 1
所以
(c1^s1*c2^s2)%n = (m^(1))%n
(c1^s1*c2^s2)%n = m^%n
即
c1^s1*c2^s2 = m
# 找出互质的两个e
# -*- coding: utf-8 -*- from libnum import n2s,s2n
from gmpy2 import invert
# 欧几里得算法
def egcd(a, b):
if a == 0:
return (b, 0, 1)
else:
g, y, x = egcd(b % a, a)
return (g, x - (b // a) * y, y) def main():
n = 116547141139745534253172934123407786743246513874292261984447028928003798881819567221547298751255790928878194794155722543477883428672342894945552668904410126460402501558930911637857436926624838677630868157884406020858164140754510239986466552869866296144106255873879659676368694043769795604582888907403261286211
c1 = 78552378607874335972488545767374401332953345586323262531477516680347117293352843468592985447836452620945707838830990843415342047337735534418287912723395148814463617627398248738969202758950481027762126608368555442533803610260859075919831387641824493902538796161102236794716963153162784732179636344267189394853
c2 = 98790462909782651815146615208104450165337326951856608832305081731255876886710141821823912122797166057063387122774480296375186739026132806230834774921466445172852604926204802577270611302881214045975455878277660638731607530487289267225666045742782663867519468766276566912954519691795540730313772338991769270201
e1 = 1804229351
e2 = 17249876309
s = egcd(e1, e2)
s1 = s[1]
s2 = s[2]
# 求模反元素
if s1<0:
s1 = - s1
c1 = invert(c1, n)
elif s2<0:
s2 = - s2
c2 = invert(c2, n) m = pow(c1,s1,n)*pow(c2,s2,n) % n
print n2s(m) if __name__ == '__main__':
main()
m = c1^s1*c2^s2 mod N
e1=1804229351
e2=17249876309
找到e1*s1+e2*s2=1的数(s1和s2异号)
s1=-49585666
s2=30337985
m = c1^s1*c2^s2 mod N
而在数论模运算中,要求一个数的负数次幂,与常规方法并不一样。
比如此处要求c2的s2次幂,就要先计算c2的模反元素c2r,然后求c2r的-s2次幂
找到s1的模反元素s1’=59221997946241237795280012961437755364319177847020996196260345560126624777905328671070619808742865206317231208856631213568682080308815472681816780528704149634900198556309885979020516076840693722669944415333783759008733319693789770248367473172650278434329453755225555333827588704035092685296296296058289109176
求m得到:m=11859814987468385682904193929732856121563109146807186957694593421160017639466355
RSA的共模攻击的更多相关文章
- [CTF] RSA共模攻击
from gmpy2 import * import libnum n = 0x00b0bee5e3e9e5a7e8d00b493355c618fc8c7d7d03b82e409951c182f398 ...
- RSA进阶之共模攻击
适用场景: 同一个n,对相同的m进行了加密,e取值不一样. e1和e2互质,gcd(e1,e2)=1 如果满足上述条件,那么就可以在不分解n的情况下求解m 原理 复杂的东西简单说: 如果gcd(e1, ...
- RSA共模攻击
在安恒月赛中碰到一道密码学方向的ctf题 附上源码 from flag import flag from Crypto.Util.number import * p=getPrime(1024) q= ...
- RSA简介(二)——模幂算法
RSA最终加密.解密都要用到模乘的幂运算,简称模幂运算. 回忆一下RSA,从明文A到B B=Ae1%N 对B解密,就是 A=Be2%N 其中,一般来说,加密公钥中的e1一般会比较小,取65537居多, ...
- RSA进阶之维纳攻击(wiener-attack )
维纳攻击: 场景:e很大 例题: 第七届山东网络安全技能大赛 链接:https://pan.baidu.com/s/1IRInw3pB7SQfp3MxRJW17A 提取码:lcn3 e很大,妥了,维纳 ...
- 强网杯2018 - nextrsa - Writeup
强网杯2018 - nextrsa - Writeup 原文地址:M4x@10.0.0.55 所有代码均已上传至我的github 俄罗斯套娃一样的rsa题目,基本把我见过的rsa套路出了一遍,值得记录 ...
- 简单RSA攻击方式
RSA攻击方式总结 1.模数分解 1).解题思路 a).找到RSA算法中的公钥(e,n) b).通过n来找到对应的p和q,然后求得φ(n) c).通过gmpy2.invert或者gmpy2 ...
- 公钥密码RSA算法记录
介绍: RSA算法是1978年由 R.Rivest.A.Shamir.L.Adleman提出的一种用数论构造的.也是迄今为止理论上最为成熟.完善的公钥密码体,该体制已得到广泛的应用. 算法描述: 1. ...
- Given d and e, factorize N to attack RSA
题目如下: RSA算法的使用一般要求每个不同的用户有一个独立的模数N.有天,Bob脑洞大开,认为似乎没有必要这样做.只需要一个模数N,然后给不同的用户分发不同的e和d就好了.可惜这种做法有严重的安全漏 ...
随机推荐
- P3043 [USACO12JAN]牛联盟Bovine Alliance(并查集)
P3043 [USACO12JAN]牛联盟Bovine Alliance 题目描述 Bessie and her bovine pals from nearby farms have finally ...
- P3822 [NOI2017]整数
传送门 shadowice大佬已经写的非常详细了我就不再写一遍了-- //minamoto #include<bits/stdc++.h> #define u unsigned int # ...
- 洛谷P4887 第十四分块(前体)(二次离线莫队)
题面 传送门 题解 lxl大毒瘤 我们考虑莫队,在移动端点的时候相当于我们需要快速计算一个区间内和当前数字异或和中\(1\)的个数为\(k\)的数有几个,而这个显然是可以差分的,也就是\([l,r]\ ...
- Redis集群创建和配置
1.检查GCC是否安装,可以看看版本号 gcc -v 安装命令:yum install gcc-c++ 2.安装Ruby和Rubygems 如果有网的话,则通过yum命令进行安装,自动将关联的依赖包全 ...
- UnicodeEncodeError: ‘ascii’ codec can’t encode character u’\u8888′ in position 0: ordinal not in range(168)
python保存文件UnicodeEncodeError以及reload(sys)后print失效问题 在将字符串写入文件时,执行f.write(str),后台总是报错:UnicodeEncodeEr ...
- 【知识总结】多项式全家桶(三)(任意模数NTT)
经过两个月的咕咕,"多项式全家桶" 系列终于迎来了第三期--(雾) 上一篇:[知识总结]多项式全家桶(二)(ln和exp) 先膜拜(伏地膜)大恐龙的博客:任意模数 NTT (在页面 ...
- C#学习-EF在三层中使用
1.搭建普通三层 DAL层,BLL层,Model层,Web层: DAL层引用Model层 BLL层引用DAL层和Model层 Web层引用BLL层和Model层 2.实现EF三层的搭建(添加引用,修改 ...
- exe4j将可执行的jar封装成exe文件
1,将java项目打包成可执行的jar:https://www.cnblogs.com/3b2414/p/9355292.html, 2,下载好exe4j工具, 3,首先注册,如果你不注册,打包好的软 ...
- scla-基础-函数-元组(0)
//元组 class Demo2 extends TestCase { def test_create_^^(){ val yuana = (1,true,1.2,"c",&quo ...
- 87. [NOIP2000] 乘积最大
★☆ 输入文件:cjzd.in 输出文件:cjzd.out 简单对比 时间限制:1 s 内存限制:128 MB 问题描述 今年是国际数学联盟确定的“2000——世界数学年”,又恰逢我国 ...