实验吧题目:http://www.shiyanbar.com/ctf/1834

参考:http://hebin.me/2017/09/07/%e8%a5%bf%e6%99%aectf-strength/

首先说一下RSA的工作原理,RSA涉及一下几个参数:

  • 要加密的信息为m,加密后的信息为c;
  • 模n,负责计算出两个质数p和q,p和q计算欧拉函数值φ(n);
  • 欧拉函数值φ(n),φ(n)=(p-1)(q-1);
  • 公钥参数e和私钥参数d,可由欧拉函数值计算出,ed≡1 (mod φ(n));
  • 加密:me ≡ c (mod n)
  • 解密:cd ≡ m (mod n)

当n不变的情况下,知道n,e1,e2,c1,c2 可以在不知道d1,d2的情况下,解出m。

首先假设,e1,e2互质

gcd(e1,e2)=1

此时则有

e1*s1+e2*s2 = 1

式中,s1、s2皆为整数,但是一正一负。

通过扩展欧几里德算法,我们可以得到该式子的一组解(s1,s2),假设s1为正数,s2为负数.

因为

c1 = m^e1%n c2 = m^e2%n

所以

(c1^s1*c2^s2)%n = ((m^e1%n)^s1*(m^e2%n)^s2)%n

根据模运算性质,可以化简为

(c1^s1*c2^s2)%n = ((m^e1)^s1*(m^e2)^s2)%n

(c1^s1*c2^s2)%n = (m^(e1^s1+e2^s2))%n

又前面提到

e1*s1+e2*s2 = 1

所以

(c1^s1*c2^s2)%n = (m^(1))%n 
(c1^s1*c2^s2)%n = m^%n

c1^s1*c2^s2 = m

# 找出互质的两个e

# -*- coding: utf-8 -*-

from libnum import n2s,s2n
from gmpy2 import invert
# 欧几里得算法
def egcd(a, b):
if a == 0:
return (b, 0, 1)
else:
g, y, x = egcd(b % a, a)
return (g, x - (b // a) * y, y) def main():
n = 116547141139745534253172934123407786743246513874292261984447028928003798881819567221547298751255790928878194794155722543477883428672342894945552668904410126460402501558930911637857436926624838677630868157884406020858164140754510239986466552869866296144106255873879659676368694043769795604582888907403261286211
c1 = 78552378607874335972488545767374401332953345586323262531477516680347117293352843468592985447836452620945707838830990843415342047337735534418287912723395148814463617627398248738969202758950481027762126608368555442533803610260859075919831387641824493902538796161102236794716963153162784732179636344267189394853
c2 = 98790462909782651815146615208104450165337326951856608832305081731255876886710141821823912122797166057063387122774480296375186739026132806230834774921466445172852604926204802577270611302881214045975455878277660638731607530487289267225666045742782663867519468766276566912954519691795540730313772338991769270201
e1 = 1804229351
e2 = 17249876309
s = egcd(e1, e2)
s1 = s[1]
s2 = s[2]
# 求模反元素
if s1<0:
s1 = - s1
c1 = invert(c1, n)
elif s2<0:
s2 = - s2
c2 = invert(c2, n) m = pow(c1,s1,n)*pow(c2,s2,n) % n
print n2s(m) if __name__ == '__main__':
main()

m = c1^s1*c2^s2 mod N

e1=1804229351

e2=17249876309

找到e1*s1+e2*s2=1的数(s1和s2异号)

s1=-49585666

s2=30337985

m = c1^s1*c2^s2 mod N

而在数论模运算中,要求一个数的负数次幂,与常规方法并不一样。

比如此处要求c2的s2次幂,就要先计算c2的模反元素c2r,然后求c2r的-s2次幂

找到s1的模反元素s1’=59221997946241237795280012961437755364319177847020996196260345560126624777905328671070619808742865206317231208856631213568682080308815472681816780528704149634900198556309885979020516076840693722669944415333783759008733319693789770248367473172650278434329453755225555333827588704035092685296296296058289109176

求m得到:m=11859814987468385682904193929732856121563109146807186957694593421160017639466355

RSA的共模攻击的更多相关文章

  1. [CTF] RSA共模攻击

    from gmpy2 import * import libnum n = 0x00b0bee5e3e9e5a7e8d00b493355c618fc8c7d7d03b82e409951c182f398 ...

  2. RSA进阶之共模攻击

    适用场景: 同一个n,对相同的m进行了加密,e取值不一样. e1和e2互质,gcd(e1,e2)=1 如果满足上述条件,那么就可以在不分解n的情况下求解m 原理 复杂的东西简单说: 如果gcd(e1, ...

  3. RSA共模攻击

    在安恒月赛中碰到一道密码学方向的ctf题 附上源码 from flag import flag from Crypto.Util.number import * p=getPrime(1024) q= ...

  4. RSA简介(二)——模幂算法

    RSA最终加密.解密都要用到模乘的幂运算,简称模幂运算. 回忆一下RSA,从明文A到B B=Ae1%N 对B解密,就是 A=Be2%N 其中,一般来说,加密公钥中的e1一般会比较小,取65537居多, ...

  5. RSA进阶之维纳攻击(wiener-attack )

    维纳攻击: 场景:e很大 例题: 第七届山东网络安全技能大赛 链接:https://pan.baidu.com/s/1IRInw3pB7SQfp3MxRJW17A 提取码:lcn3 e很大,妥了,维纳 ...

  6. 强网杯2018 - nextrsa - Writeup

    强网杯2018 - nextrsa - Writeup 原文地址:M4x@10.0.0.55 所有代码均已上传至我的github 俄罗斯套娃一样的rsa题目,基本把我见过的rsa套路出了一遍,值得记录 ...

  7. 简单RSA攻击方式

    RSA攻击方式总结 1.模数分解 1).解题思路 ​ a).找到RSA算法中的公钥(e,n) ​ b).通过n来找到对应的p和q,然后求得φ(n) ​ c).通过gmpy2.invert或者gmpy2 ...

  8. 公钥密码RSA算法记录

    介绍: RSA算法是1978年由 R.Rivest.A.Shamir.L.Adleman提出的一种用数论构造的.也是迄今为止理论上最为成熟.完善的公钥密码体,该体制已得到广泛的应用. 算法描述: 1. ...

  9. Given d and e, factorize N to attack RSA

    题目如下: RSA算法的使用一般要求每个不同的用户有一个独立的模数N.有天,Bob脑洞大开,认为似乎没有必要这样做.只需要一个模数N,然后给不同的用户分发不同的e和d就好了.可惜这种做法有严重的安全漏 ...

随机推荐

  1. HTML和JSP的不同及优缺点

    HTML(Hypertext Markup Language)文本标记语言,它是静态页面,和JavaScript一样解释性语言,为什么说是解释性语言呢?因为,只要你有一个浏览器那么它就可以正常显示出来 ...

  2. UE编辑器编译和运行java设置

    工具原料: UE编辑器 1点击“高级”,再点击“工具配置”. 2点击“插入”,在“菜单项”名称上输入“编译java程序”,在“命令行”里输入“javac %n%e”,在工作目录上填“%p”. 3切换到 ...

  3. windows 定时任务 设置 安全事项

    windows 定时任务 设置 安全事项 1.如果是oaadmin/administrator 创建oracle 数据库. 安全选项如下: 1.只是在用户登录时候运行. sample: data ho ...

  4. NPOI 导出Excel 2007, 2013问题

    NPOI默认有两个命名空间HSSF为Excel 2003 版本,若导出2007 及以上后缀名打开excel 则会报错,NPOI也提供了一个07及以上的版本空间XSSF,具体操作列下: NPOI.XSS ...

  5. Java 8 (5) Stream 流 - 收集数据

    在前面已经使用过collect终端操作了,主要是用来把Stream中的所有元素结合成一个List,在本章中,你会发现collect是一个归约操作,就像reduce一样可以接受各种做法作为参数,将流中的 ...

  6. [ TJOI 2007 ] 线段

    \(\\\) \(Description\) 一个\(N\times N\) 的网格,每行有一段要必走,求从\((1,1)\)到\((N,N)\)的最短路长度. \(N\le 2\times10^4\ ...

  7. PKI中常用编码:ASN.1 DER BER Base64

    迟到了两年的笔记... 在PKI的应用中,常会用到以下几个编码概念: ASN.1(Abstract Syntax Notation One, 抽象语法标记) 定义:A standard interfa ...

  8. 在自学css开始就遇到问题,“链入外部样式表”在多浏览器显示问题

    在自学css开始就遇到问题,“链入外部样式表”的习题,代码如下:A.被链入的CSS文件代码.css<style  type="text/css"><!--h1{b ...

  9. 前端axios发送的数据后端接收不到(没有自动依赖注入)可能的原因

    前端请求头content-type没有进行正确设置,后端无法解析该类型数据,比如说: 后端若想接收json类型的数据,则需要配置相应的转换器,(spring中可使用@RequestBody注解),若没 ...

  10. 打造个人的vimIDE

    环境说明 系统版本:centos7.Ubuntu16 vim版本:7.4 安装git工具 整体说明:本文的vim配置是针对Linux的单个系统用户,python的自动补全使用的是 jedi-vim 插 ...