Description

Perhaps you all have heard the mythical story about Tower of Hanoi (The details of this story is not required to solve this problem): “There is a tower of Hanoi with 64 disks and three pegs and the preists make one move everyday and the earth will be destroyed when all the pegs have been moved from one peg to the other following the rules of Tower of Hanoi.” In this problem we deal with a similar story – The story of an ancient temple. The ancient temple has three incredibly large bells. At the beginning of time the three bells rang together. Then the three bells never rang together and when they will ring together again the earth will be destroyed. The three bells have cycle length of t1, t2and t3 (Here t1<t2<t3 and all are expressed in miliseconds). By this I mean that the first bell rings at every t1 seconds from the beginning, the second bell rings at every t2second from the beginning and the third bell rings at every t3 second from the beginning. Also note that the difference of the values of t1, t2 and t3 is not that much different so that ordinary people think many time that they are ringing together.

Given the time difference between destruction of earth and beginning of time you will have to find the values of t1, t2 and t3.

Input

The input file contains at most 600 lines of inputs. Each line contains an integer which denotes (in millisecond) the time difference between the beginning of time and the time of the bells ringing together. Input is terminated by a line containing a single zero. All the input numbers will fit in a 64 bit signed integer.

Output

For each line of input produce two lines or more of output. The first line contains the serial of output. Each of the next lines contains three integers which denote the values of t1, t2 and t3 respectively. The value of t1, t2 and t3 is such that t1<t2<t3 and 0<t1, t2, t3≤1000000 and |t1-t3|≤25. If you cannot find values of t1, t2, twith such constraints then print the line “Such bells don’t exist” instead. In case there is more than one solution sort the output in ascending order of the value of t1, then (in case of a tie) in the ascending order of the value of t2 and then (still a tie) in ascending order of the value t3. Print a blank line after the output for each test case. Look at the output for sample input for details.

这道题使用枚举的方法就好,不过值得注意的是数据类型的选取,n有可能是一个非常大的数,所以必须把所有整型换成long long型

#include"iostream"
using namespace std;
const int maxn=1000000;
long long gcd(long long a,long long b) //求公共质因数
{
return (b==0)?a:gcd(b,a%b);
} int main()
{
long long n,gonbei1,gonbei2,f=0;
while(cin>>n&&n)
{
int flag=0;
cout<<"Scenario "<<++f<<":"<<endl;
for(long long i=1;i<=1000000;i++)
{
if(n%i) continue;
for(long long j=i+1;j<=i+25&&j<=maxn;j++)
{
if(n%j) continue;
gonbei1=(i*j)/gcd(i,j);
for(long long k=j+1;k<=i+25&&k<=maxn;k++)
{
if(n%k) continue;
gonbei2=(gonbei1*k)/gcd(gonbei1,k);
if(gonbei2==n) {cout<<i<<' '<<j<<' '<<k<<endl;flag=1;}
}
}
}
if(flag==0) cout<<"Such bells don't exist"<<endl;
cout<<endl;
}
return 0;
}

The Bells are Ringing(枚举)的更多相关文章

  1. UVA - 12119 The Bells are Ringing (枚举)

    Perhaps you all have heard the mythical story about Tower of Hanoi (The details of this story is not ...

  2. The Bells are Ringing UVALive - 4060(枚举求解)

    输出整数N,使得  t1 <= N  统计有多少组t1,t2,t3,满足:1<t1<t2<t3<=1000000,t3-t1<=25,且t1,t2,t3的最小公倍数 ...

  3. .Uva&LA部分题目代码

    1.LA 5694 Adding New Machine 关键词:数据结构,线段树,扫描线(FIFO) #include <algorithm> #include <cstdio&g ...

  4. [学习笔记] 舞蹈链(DLX)入门

    "在一个全集\(X\)中若干子集的集合为\(S\),精确覆盖(\(\boldsymbol{Exact~Cover}\))是指,\(S\)的子集\(S*\),满足\(X\)中的每一个元素在\( ...

  5. Nordic Collegiate Programming Contest 2015​ B. Bell Ringing

    Method ringing is used to ring bells in churches, particularly in England. Suppose there are 6 bells ...

  6. Swift enum(枚举)使用范例

    //: Playground - noun: a place where people can play import UIKit var str = "Hello, playground& ...

  7. 编写高质量代码:改善Java程序的151个建议(第6章:枚举和注解___建议88~92)

    建议88:用枚举实现工厂方法模式更简洁 工厂方法模式(Factory Method Pattern)是" 创建对象的接口,让子类决定实例化哪一个类,并使一个类的实例化延迟到其它子类" ...

  8. Objective-C枚举的几种定义方式与使用

    假设我们需要表示网络连接状态,可以用下列枚举表示: enum CSConnectionState { CSConnectionStateDisconnected, CSConnectionStateC ...

  9. Help Hanzo (素数筛+区间枚举)

    Help Hanzo 题意:求a~b间素数个数(1 ≤ a ≤ b < 231, b - a ≤ 100000).     (全题在文末) 题解: a~b枚举必定TLE,普通打表MLE,真是头疼 ...

随机推荐

  1. PostgreSQL 9.6.2版本在centOS下的安装和配置

    1.如果有用yum安装过旧版,卸载掉: yum remove postgresql* 2.更新一下yum: sudo yum update 3.去 官网 找到 适合你系统 的资源的下载地址,然后使用w ...

  2. python正则表达式_总结

    正则表达式: 作用:正则表达式是用来查找字符串的. 之前:使用正则表达式首先要导入re模块(import re) re.match -- 从字符串的第一个单词开始匹配字符串.如果匹配到则返回一个对象: ...

  3. CAD中的文本编排操作

        AutoCAD中导入超文本实现方法 除了AutoCAD内含的文本输入命令外,向AutoCAD中输入多行文本即超文本的方法还有:通过Windows提供的剪贴板,利用AutoCAD提供的多行文本命 ...

  4. [Usaco2009 Feb]庙会捷运Fair Shuttle

    Description 公交车一共经过N(1<=N<=20000)个站点,从站点1一直驶到站点N.K(1<=K<=50000)群奶牛希望搭乘这辆公交车.第i群牛一共有Mi(1& ...

  5. ACM_送气球(规律题)

    送气球 Time Limit: 2000/1000ms (Java/Others) Problem Description: 为了奖励近段时间辛苦刷题的ACMer,会长决定给正在机房刷题的他们送气球. ...

  6. java中实参与形参的概念

    形参: public void fun(形参类型 形参名){ ... } 实参: public static void main(String[] args){ 类 对象名=new 类(); 对象名. ...

  7. Linux普通到root用户切换-转

    1.Linux中的用户切换:su和su - 的区别 大部分Linux发行版的默认账户是普通用户,而更改系统文件或者执行某些命令,需要root身份才能进行,这就需要从当前用户切换到root用户,Linu ...

  8. h5学习-canvas绘制矩形、圆形、文字、动画

    绘制矩形<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8 ...

  9. 轻松搞懂Java中的自旋锁

    前言 在之前的文章<一文彻底搞懂面试中常问的各种“锁”>中介绍了Java中的各种“锁”,可能对于不是很了解这些概念的同学来说会觉得有点绕,所以我决定拆分出来,逐步详细的介绍一下这些锁的来龙 ...

  10. [ USACO 2013 OPEN ] Photo

    \(\\\) Description 有一个长度为 \(n\) 的奶牛队列,奶牛颜色为黑或白. 现给出 \(m\) 个区间 \([L_i,R_i]\) ,要求:每个区间里 有且只有一只黑牛 . 问满足 ...