Description

Perhaps you all have heard the mythical story about Tower of Hanoi (The details of this story is not required to solve this problem): “There is a tower of Hanoi with 64 disks and three pegs and the preists make one move everyday and the earth will be destroyed when all the pegs have been moved from one peg to the other following the rules of Tower of Hanoi.” In this problem we deal with a similar story – The story of an ancient temple. The ancient temple has three incredibly large bells. At the beginning of time the three bells rang together. Then the three bells never rang together and when they will ring together again the earth will be destroyed. The three bells have cycle length of t1, t2and t3 (Here t1<t2<t3 and all are expressed in miliseconds). By this I mean that the first bell rings at every t1 seconds from the beginning, the second bell rings at every t2second from the beginning and the third bell rings at every t3 second from the beginning. Also note that the difference of the values of t1, t2 and t3 is not that much different so that ordinary people think many time that they are ringing together.

Given the time difference between destruction of earth and beginning of time you will have to find the values of t1, t2 and t3.

Input

The input file contains at most 600 lines of inputs. Each line contains an integer which denotes (in millisecond) the time difference between the beginning of time and the time of the bells ringing together. Input is terminated by a line containing a single zero. All the input numbers will fit in a 64 bit signed integer.

Output

For each line of input produce two lines or more of output. The first line contains the serial of output. Each of the next lines contains three integers which denote the values of t1, t2 and t3 respectively. The value of t1, t2 and t3 is such that t1<t2<t3 and 0<t1, t2, t3≤1000000 and |t1-t3|≤25. If you cannot find values of t1, t2, twith such constraints then print the line “Such bells don’t exist” instead. In case there is more than one solution sort the output in ascending order of the value of t1, then (in case of a tie) in the ascending order of the value of t2 and then (still a tie) in ascending order of the value t3. Print a blank line after the output for each test case. Look at the output for sample input for details.

这道题使用枚举的方法就好,不过值得注意的是数据类型的选取,n有可能是一个非常大的数,所以必须把所有整型换成long long型

#include"iostream"
using namespace std;
const int maxn=1000000;
long long gcd(long long a,long long b) //求公共质因数
{
return (b==0)?a:gcd(b,a%b);
} int main()
{
long long n,gonbei1,gonbei2,f=0;
while(cin>>n&&n)
{
int flag=0;
cout<<"Scenario "<<++f<<":"<<endl;
for(long long i=1;i<=1000000;i++)
{
if(n%i) continue;
for(long long j=i+1;j<=i+25&&j<=maxn;j++)
{
if(n%j) continue;
gonbei1=(i*j)/gcd(i,j);
for(long long k=j+1;k<=i+25&&k<=maxn;k++)
{
if(n%k) continue;
gonbei2=(gonbei1*k)/gcd(gonbei1,k);
if(gonbei2==n) {cout<<i<<' '<<j<<' '<<k<<endl;flag=1;}
}
}
}
if(flag==0) cout<<"Such bells don't exist"<<endl;
cout<<endl;
}
return 0;
}

The Bells are Ringing(枚举)的更多相关文章

  1. UVA - 12119 The Bells are Ringing (枚举)

    Perhaps you all have heard the mythical story about Tower of Hanoi (The details of this story is not ...

  2. The Bells are Ringing UVALive - 4060(枚举求解)

    输出整数N,使得  t1 <= N  统计有多少组t1,t2,t3,满足:1<t1<t2<t3<=1000000,t3-t1<=25,且t1,t2,t3的最小公倍数 ...

  3. .Uva&LA部分题目代码

    1.LA 5694 Adding New Machine 关键词:数据结构,线段树,扫描线(FIFO) #include <algorithm> #include <cstdio&g ...

  4. [学习笔记] 舞蹈链(DLX)入门

    "在一个全集\(X\)中若干子集的集合为\(S\),精确覆盖(\(\boldsymbol{Exact~Cover}\))是指,\(S\)的子集\(S*\),满足\(X\)中的每一个元素在\( ...

  5. Nordic Collegiate Programming Contest 2015​ B. Bell Ringing

    Method ringing is used to ring bells in churches, particularly in England. Suppose there are 6 bells ...

  6. Swift enum(枚举)使用范例

    //: Playground - noun: a place where people can play import UIKit var str = "Hello, playground& ...

  7. 编写高质量代码:改善Java程序的151个建议(第6章:枚举和注解___建议88~92)

    建议88:用枚举实现工厂方法模式更简洁 工厂方法模式(Factory Method Pattern)是" 创建对象的接口,让子类决定实例化哪一个类,并使一个类的实例化延迟到其它子类" ...

  8. Objective-C枚举的几种定义方式与使用

    假设我们需要表示网络连接状态,可以用下列枚举表示: enum CSConnectionState { CSConnectionStateDisconnected, CSConnectionStateC ...

  9. Help Hanzo (素数筛+区间枚举)

    Help Hanzo 题意:求a~b间素数个数(1 ≤ a ≤ b < 231, b - a ≤ 100000).     (全题在文末) 题解: a~b枚举必定TLE,普通打表MLE,真是头疼 ...

随机推荐

  1. jira以及jira API简单介绍

    最近需要预言:是否可以通过jira API实现用例管理,对jira的应用.API.扩展等进行了一定的了解. Jira介绍: jira是目前比较流行的基于Java架构的管理系统(Atlassian公司支 ...

  2. 浅谈算法——Manacher

    字符串算法在各大高级比赛中均有用到,所以,学习好字符串算法对我们而言十分重要.那么,今天我们就给大家介绍一个快速求回文串的算法,Manacher算法,我们也习惯性叫它马拉车算法. 一.引入 首先我们要 ...

  3. 牛客网暑期ACM多校训练营(第五场)

    J-plan(贪心) 题目描述 There are n students going to travel. And hotel has two types room:double room and t ...

  4. Oracle查询使用空间比较大的前15个表

    -- 查询使用空间比较大的前15个表 select a.* from( ,2) all_size from dba_segments where SEGMENT_TYPE='TABLE' order ...

  5. dockerfile构建的镜像

    转载请注明出处 https://www.cnblogs.com/majianming/p/9536975.html 在每执行一个命令时,便会commit形成一个层,最后形成堆栈式的结构.最后的镜像是各 ...

  6. android开发学习——facebook第三方登录,看了你不会后悔

    给APP用原生android进行facebook第三方登录. 我们做一件事情,首先得了解其原理,这样才不会迷茫,才知道自己做到什么程度了,心里才会有底. 所以,第一步,了解第三方登录的原理:下面贴一些 ...

  7. T4869 某种数列问题 (jx.cpp/c/pas) 1000MS 256MB

    题目描述 众所周知,chenzeyu97有无数的妹子(阿掉!>_<),而且他还有很多恶趣味的问题,继上次纠结于一排妹子的排法以后,今天他有非(chi)常(bao)认(cheng)真(zhe ...

  8. windows server 2008 r2 IIS7下网站配置 只允许指定的IP地址访问

    步骤一.找到ip地址和域限制 步骤二.添加全部拒绝 步骤三.添加允许访问的ip地址(局域网填写局域网ip,公网填写公网ip)  步骤四:如果想要拒绝某些ip访问,直接在规则中添加拒绝条目就可以  

  9. preg_replace_callback使用方法

    官网解释: 执行一个正则表达式搜索并且使用一个回调进行替换 (PHP 4 >= 4.0.5, PHP 5) preg_replace_callback — 执行一个正则表达式搜索并且使用一个回调 ...

  10. greenplum4.3.8.2安装

    GREENPLUM总体结构:   数据库由Master Severs和Segment Severs通过Interconnect互联组成. Master主机负责:建立与客户端的连接和管理:SQL的解析并 ...