poj 2154 Color【polya定理+欧拉函数】
根据polya定理,答案应该是
\]
但是这个显然不能直接求,因为n是1e9级别的,所以推一波式子:
\]
\]
\]
\]
\]
这样就可以求了,但是注意时间还是很紧,所以开long long会T,求phi不预处理质数也会T
#include<iostream>
#include<cstdio>
using namespace std;
const int N=100005;
int T,n,mod,ans,p[N],tot;
bool v[N];
int ksm(int a,int b)
{
int r=1;
a%=mod;
while(b)
{
if(b&1)
r=r*a%mod;
a=a*a%mod;
b>>=1;
}
return r;
}
int phi(int n)
{
int r=n;
for(int i=0;p[i]*p[i]<=n;i++)
if(n%p[i]==0)
{
r=r-r/p[i];
while(n%p[i]==0)
n/=p[i];
}
if(n>1)
r=r-r/n;
return r%mod;
}
int main()
{
for(int i=2;i<=100000;i++)
if(!v[i])
{
p[tot++]=i;
for(int j=i+i;j<100000;j+=i)
v[j]=1;
}
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&mod);
ans=0;
for(int i=1;i*i<=n;i++)
if(n%i==0)
{
ans=(ans+ksm(n,i-1)*phi(n/i))%mod;
if(i*i!=n)
ans=(ans+ksm(n,n/i-1)*phi(i))%mod;
}
printf("%d\n",ans);
}
return 0;
}
poj 2154 Color【polya定理+欧拉函数】的更多相关文章
- 【poj2154】Color Polya定理+欧拉函数
题目描述 $T$ 组询问,用 $n$ 种颜色去染 $n$ 个点的环,旋转后相同视为同构.求不同构的环的个数模 $p$ 的结果. $T\le 3500,n\le 10^9,p\le 30000$ . 题 ...
- POJ2154 Color【 polya定理+欧拉函数优化】(三个例题)
由于这是第一天去实现polya题,所以由易到难,先来个铺垫题(假设读者是看过课件的,不然可能会对有些“显然”的地方会看不懂): 一:POJ1286 Necklace of Beads :有三种颜色,问 ...
- poj2154Color polya定理+欧拉函数优化
没想到贱贱的数据居然是错的..搞得我调了一中午+晚上一小时(哦不d飞LJH掉RP毕竟他是BUFF)结果重判就对了五次.. 回归正题,这题傻子都看得出是polya定理(如果你不是傻子就看这里),还没有翻 ...
- POJ2154 Color 【Polya定理 + 欧拉函数】
题目 Beads of N colors are connected together into a circular necklace of N beads (N<=1000000000). ...
- poj2154(polya定理+欧拉函数)
题目链接:http://poj.org/problem?id=2154 题意:n 种颜色的珠子构成一个长为 n 的环,每种颜色珠子个数无限,也不一定要用上所有颜色,旋转可以得到状态只算一种,问有多少种 ...
- 【POJ2154】Color Pólya定理+欧拉函数
[POJ2154]Color 题意:求用$n$种颜色染$n$个珠子的项链的方案数.在旋转后相同的方案算作一种.答案对$P$取模. 询问次数$\le 3500$,$n\le 10^9,P\le 3000 ...
- Luogu4980 【模板】Polya定理(Polya定理+欧拉函数)
对于置换0→i,1→i+1……,其中包含0的循环的元素个数显然是n/gcd(i,n),由对称性,循环节个数即为gcd(i,n). 那么要求的即为Σngcd(i,n)/n(i=0~n-1,也即1~n). ...
- POJ 2154 color (polya + 欧拉优化)
Beads of N colors are connected together into a circular necklace of N beads (N<=1000000000). You ...
- poj 2154 Color(polya计数 + 欧拉函数优化)
http://poj.org/problem?id=2154 大致题意:由n个珠子,n种颜色,组成一个项链.要求不同的项链数目.旋转后一样的属于同一种.结果模p. n个珠子应该有n种旋转置换.每种置换 ...
随机推荐
- api安全认证
三.auth自定义授权 客户端代码: import requests import hashlib import time current_time = time.time() #自意义的字符串app ...
- Eclipse调试相关
Eclipse调试相关 F5 step into就是单步执行,遇到子函数就进入并且继续单步执行. F6 step over是在单步执行时,在函数内遇到子函数时不会进入子函数内单步执行,而是将子函数整个 ...
- MySQL:视图、触发器、存储过程、事务
视图: 视图,虚拟表 创建虚拟表: # 语法: # create view 虚拟表名称 as 虚拟表; create view course_and_teacher as select * from ...
- [NOIP2007] 提高组 洛谷P1097 统计数字
题目描述 某次科研调查时得到了n个自然数,每个数均不超过1500000000(1.5*10^9).已知不相同的数不超过10000个,现在需要统计这些自然数各自出现的次数,并按照自然数从小到大的顺序输出 ...
- Servlet CDI 例子分析
@WebServlet("/cdiservlet") //以@WebServlet注释开头,注释指定相对于上下文根的URL模式,即在根目录下使用/cdiservlet来访问 pub ...
- Linux系统备份还原工具1(DD)(应用实例)
DD使用教程:http://www.cnblogs.com/EasonJim/p/7442223.html 以下实例没经过大量测试,可能在一些机器上不会有效. 一般围绕以下几点进行设置: 1.dd完后 ...
- SLF4J 和 Logback 在 Maven 项目中的使用方法
原文:http://blog.csdn.net/llmmll08/article/details/70217120 本文介绍 SLF4J 和 Logback 在 Maven 项目中的用法,包括日志框架 ...
- [Debug] Node-sass
Meet some problem when trying to install node-sass on windwos. Company has proxy settings, need to r ...
- 查看yarn当前执行任务列表
Author: kwu 查看yarn当前执行任务列表.可使用例如以下命令查看: yarn application -list 如需杀死当前某个作业,使用kill application-id的命令例如 ...
- FFmpeg的HEVC解码器源码简单分析:概述
===================================================== HEVC源码分析文章列表: [解码 -libavcodec HEVC 解码器] FFmpeg ...