Description

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。 我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。

Input

输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。

Output

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"
 
这道题需要用到数论的同余思想进行求解,对于ax与b在mod L情况下恒等时,当且仅当gcd(a,L)能被b整除时才有解,所以不能整除时,直接输出Impossible
能整除时利用同余条件下的定理,和欧几里得扩展定理,来得到符合条件的x,而对于这一组解来说,所有与此x在mod L条件下恒等的都是符合条件的值,我们在里面找一个最小的正整数作为结果输出即可
 
题目中可轻易得到公式(m-n)*k=q-p(mod L) 这里的k即为上面所讲的所要求的x
 
代码如下:
 
 #include <iostream>
#include <iostream>
#include <iomanip>
#include<string>
#include<cstring>
#define LL long long
using namespace std; LL a,b,x,y,d; LL gcd(LL a,LL b)
{
if(b==) return a;
else return gcd(b,a%b);
}
void ex_gcd(LL a,LL b,LL &x,LL &y,LL &d)
{
LL t;
if(b==){
d=a,x=,y=;
}
else{
ex_gcd(b,a%b,x,y,d);
t=x,x=y,y=t-a/b*y;
}
}
int main()
{
LL p,q,m,n,L;
cin>>p>>q>>m>>n>>L;
a=m-n,b=q-p; if(a<) a=-a,b=-b;
LL Gcd=gcd(a,L); if(b%Gcd!=) cout<<"Impossible"<<endl;
else{
LL temp;
a=a/Gcd,temp=L/Gcd,b=b/Gcd;
ex_gcd(a,temp,x,y,d);
b=b*x; b%=L;
if(b<) cout<<b+L<<endl;
else cout<<b<<endl;
} return ;
}

POJ1061青蛙的约会的更多相关文章

  1. POJ1061 青蛙的约会 —— 扩展gcd

    题目链接:https://vjudge.net/problem/POJ-1061 青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submi ...

  2. POJ1061青蛙的约会[扩展欧几里得]

    青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 108911   Accepted: 21866 Descript ...

  3. poj1061 青蛙的约会 扩展欧几里德的应用

    这个题解得改一下,开始接触数论,这道题目一开始是看了别人的思路做的,后来我又继续以这种方法去做题,发现很困难,学长告诉我先看书,把各种词的定义看懂了,再好好学习,我做了几道朴素的欧几里德,尽管是小学生 ...

  4. POJ1061——青蛙的约会(扩展欧几里德)

    青蛙的约会 Description两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件 ...

  5. POJ1061青蛙的约会(扩展欧几里德算法)

    青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 102239   Accepted: 19781 Descript ...

  6. POJ1061 青蛙的约会(扩展欧几里得)

    题目链接:http://poj.org/problem?id=1061 青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submission ...

  7. 解题报告:poj1061 青蛙的约会 - 扩展欧几里得算法

    青蛙的约会 writer:pprp Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 119716 Accepted: 25238 ...

  8. POJ1061 青蛙的约会 和 LOJ2721 「NOI2018」屠龙勇士

    青蛙的约会 Language:Default 青蛙的约会 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 133470 Accep ...

  9. POJ-1061青蛙的约会,扩展欧几里德求逆元!

                                                               青蛙的约会 以前不止一次看过这个题,但都没有去补..好吧,现在慢慢来做. 友情提示 ...

  10. 扩展欧几里得原理的应用:POJ1061青蛙的约会

    /* POJ 1061: 青蛙的约会 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 123709 Accepted: 26395 ...

随机推荐

  1. P2956 [USACO09OCT]机器人犁田The Robot Plow

    题目描述 Farmer John has purchased a new robotic plow in order to relieve him from the drudgery of plowi ...

  2. empty 和 isset的区别和联系

    empty 和 isset的区别和联系 要说它们的联系,其共同点就是empty()和isset()都是变量处理函数,作用是判断变量是否已经配置,正是由于它们在处理变量过程中有很大的相似性,才导致对它们 ...

  3. Outlook读取奇妙清单Wunderlist日历失败的解决办法

    错误: Outlook.com日历订阅奇妙清单的日历链接时报错 This calendar wasn't updated because of a problem with the publisher ...

  4. Java基础50题test4—分解质因数

    [分解质因数] 题目:将一个正整数分解质因数.例如:输入 90,打印出 90=2*3*3*5. 程序分析:对 n 进行分解质因数,应先找到一个最小的质数 k,然后按下述步骤完成: (1)如果这个质数恰 ...

  5. android studio 导入jar包

    或者还可以这么导入: 1.首先先去下载需要的jar包2.将jar包复制到Project下的app–>libs目录下(没有libs目录就新建一个)如下图所示位置: 3.点击工具栏中的Project ...

  6. Ubuntu16下查看CPU、内存和磁盘相关信息

    1.内存 查看内存#free -m total used free shared buff/cache available Mem: Swap: 2.CPU 查看逻辑cpu个数: #cat /proc ...

  7. Cognos添加维度

    1.打开后台cognos中的报表,创建查询主题 填写该维度的名称 以时间维度为例 从左边添加该维度的单位,修改名称(在Cognos前台显示),如果有逻辑在源里面修改下函数 以此类推.

  8. 年度精品 XP,32/64位Win7,32/64位Win10系统【电脑城版】

    随着Windows 10Build 10074 Insider Preview版发布,有理由相信,Win10离最终RTM阶段已经不远了.看来稍早前传闻的合作伙伴透露微软将在7月底正式发布Win10的消 ...

  9. MFC技术积累——基于MFC对话框类的那些事儿4

    3.3.4 借助兼容DC加载DIB位图 创建一个与设备环境相兼容的DC,通过将位图暂时导入至兼容DC,然后利用CDC::BitBlt 或者CDC::StretchBlt函数将位图绘制到设备环境中. 示 ...

  10. HashMap详解 基于jdk1.7

    转载自:http://zhangshixi.iteye.com/blog/672697 1.    HashMap概述: HashMap是基于哈希表的Map接口的非同步实现.此实现提供所有可选的映射操 ...