题解

dp

似乎这个最大值不好设计状态啊==

但是可以发现这\(n\)个点每个点都是相同的

可以设计状态\(f_{i,j}\)表示一个长度为\(i\)的一段区间的最大值不会超过\(j\)的价值

那么转移就类似于区间\(DP\),先枚举长度,再枚举最大值,然后再暴力枚举一个位置表示这个最大值最靠右的位置,然后计算这个最大值跨过这个区间的贡献即可

\(f_{i,j}=f_{i,j-1}+\sum_{k=1}^{i}{f_{k-1,j} \times f_{i-k,j - 1} \times p_{j}^{有几个长度为m的区间跨过了这个最大值}}\)

代码

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
const int M = 405 ;
const int mod = 998244353 ;
using namespace std ; inline int read() {
char c = getchar() ; int x = 0 , w = 1 ;
while(c>'9'||c<'0') { if(c=='-') w = -1 ; c = getchar() ; }
while(c>='0'&&c<='9') { x = x*10+c-'0' ; c = getchar() ; }
return x*w ;
} int n , m ;
int val[M][M] , f[M][M] ; inline int T(int len , int k) {
int l = max(1 , k - m + 1) , r = min(len , k + m - 1) ;
return max(r - l - m + 2 , 0) ;
}
int main() {
n = read() ; m = read() ;
for(int i = 1 ; i <= n ; i ++) {
val[i][0] = 1 ; val[i][1] = read() ;
for(int j = 2 ; j <= n ; j ++)
val[i][j] = 1LL * val[i][j - 1] * val[i][1] % mod ;
}
for(int i = 0 ; i <= n ; i ++) f[0][i] = 1 ;
for(int i = 1 ; i <= n ; i ++)
for(int j = 1 ; j <= n ; j ++) {
f[i][j] = f[i][j - 1] ;
for(int k = 1 ; k <= i ; k ++)
f[i][j] = (f[i][j] + 1LL * f[k - 1][j] * f[i - k][j - 1] % mod * val[j][T(i , k)] % mod) % mod ;
}
printf("%d\n",f[n][n]) ;
return 0 ;
}

[UOJ311]积劳成疾的更多相关文章

  1. uoj311 【UNR #2】积劳成疾

    传送门:http://uoj.ac/problem/311 [题解] 这题的期望dp好神奇啊(可能是我太菜了) 由于每个位置都完全一样,所以我们设$f_{i,j}$表示审了连续$i$个位置,最大值不超 ...

  2. 【UOJ#311】【UNR #2】积劳成疾(动态规划)

    [UOJ#311][UNR #2]积劳成疾(动态规划) UOJ Solution 考虑最大值分治解决问题.每次枚举最大值所在的位置,强制不能跨过最大值,左右此时不会影响,可以分开考虑. 那么设\(f[ ...

  3. [UOJ UNR #2]积劳成疾

    来自FallDream的博客,未经允许,请勿转载,谢谢. 传送门 区间最大值的题emmmm 想到构建笛卡尔树,这样自然就想到了一种dp f[i][j]表示大小为i的笛卡尔树,根的权值是j的答案. 转移 ...

  4. UOJ.311.[UNR#2]积劳成疾(DP)

    UOJ 序列中的每个位置是等价的.直接令\(f[i][j]\)表示,\(i\)个数的序列,最大值不超过\(j\)的所有序列每个长为\(k\)的子区间最大值的乘积的和. 由\(j-1\)转移到\(j\) ...

  5. UOJ #311「UNR #2」积劳成疾

    需要锻炼$ DP$能力 UOJ #311 题意 等概率产生一个长度为$ n$且每个数在[1,n]间随机的数列 定义其价值为所有长度为$ k$的连续子数列的最大值的乘积 给定$ n,k$求所有合法数列的 ...

  6. A. 【UNR #2】积劳成疾

    链接:http://uoj.ac/contest/40/problem/311 题解: 一道很好的期望题吧 用dp的老思路,枚举最大值将序列分割 想到这个就很简单了 状态f[i][j]表示前i个,最大 ...

  7. 【uoj#311】[UNR #2]积劳成疾 dp

    题目描述 一个长度为 $n$ 的序列,每个数在 $[1,n]$ 之间.给出 $m$ ,求所有序列的 $\prod_{i=1}^{n-m+1}(\text{Max}_{j=i}^{j+m-1}a[j]) ...

  8. uoj#311. 【UNR #2】积劳成疾(期望dp)

    传送门 果然\(dp\)题就没咱啥事儿了 设\(f_{i,j}\)为长度为\(i\)的区间,所有元素的值不超过\(j\)的总的疲劳值 如果\(j\)没有出现过,那么\(f_{i,j}=f_{i,j-1 ...

  9. uoj#311 【UNR #2】积劳成疾

    题目 考虑直接顺着从\(1\)填数填到\(n\)发现这是在胡扯 所以考虑一些奇诡的东西,譬如最后的答案长什么样子 显然某一种方案的贡献是一个\(\prod_{i=1}^nw_i^{t_i}\)状物,\ ...

随机推荐

  1. Spark SQL数据载入和保存实战

    一:前置知识具体解释: Spark SQL重要是操作DataFrame,DataFrame本身提供了save和load的操作. Load:能够创建DataFrame. Save:把DataFrame中 ...

  2. [Angular] Communicate Between Components Using Angular Dependency Injection

    Allow more than one child component of the same type. Allow child components to be placed within the ...

  3. [Tools] Create a Chrome Extension

    Creating a Chrome extension requires a manifest.json file which defines how your extension will beha ...

  4. fedora下安装xdot和objgraph

    前提:安装好了python 1.先下载xdot-0.6.tar.gz和objgraph-1.8.0-py27-none-any.whl,你也可以在官网上下载其他版本. 2.下载完后,解压. 3.打开终 ...

  5. 工作总结 使用html模板发邮件 前面空一大块

    HTML邮件的本质其实是发送了一个html页面.邮件的空白必然是页面的空白,所以你要找到你发送邮件的html模板所在,然后去掉空白即可,如果这是一个公共文件,需要注意你往往用的只是你的部分,很大程度还 ...

  6. I2S简单学习

    以下只是个人看法,有不妥之处,请批评指出. 参考资料:http://blog.csdn.net/ce123_zhouwei/article/details/6919954: 一.I2S接口简述 I²S ...

  7. [CSAPP]Bufbomb实验报告

    Bufbomb实验报告 实验分析: level 0-3从test開始制运行,通过函数getbuf向外界读取一串内容(buf). Level 4 是通过參数-n,程序运行testn函数,调用getbuf ...

  8. 亿部书城李柯毅:Testin云測可大幅提升产品质量 值得推荐!

    亿部书城李柯毅:Testin云測可大幅提升产品质量 值得推荐! 2014/10/13 · Testin · 开发人员訪谈 成立于2010年的亿部书城.其主营业务为移动增值业务及数字出版业务,由中央部委 ...

  9. Codeforces 768 E. Game of Stones 博弈DP

    E. Game of Stones   Sam has been teaching Jon the Game of Stones to sharpen his mind and help him de ...

  10. Latex 2: 解决WinEdt和TexWorks用久之后忽然不能正反向搜索

    说明:下面说的WinEdt版本是10.1,TexWorks是texlive2016中自带的texworks,如果情况不一样请自行测试,原理一样 1.不能正向搜索: 解决:① 确定路径名是英文名(实际上 ...