[UOJ311]积劳成疾
题解
dp
似乎这个最大值不好设计状态啊==
但是可以发现这\(n\)个点每个点都是相同的
可以设计状态\(f_{i,j}\)表示一个长度为\(i\)的一段区间的最大值不会超过\(j\)的价值
那么转移就类似于区间\(DP\),先枚举长度,再枚举最大值,然后再暴力枚举一个位置表示这个最大值最靠右的位置,然后计算这个最大值跨过这个区间的贡献即可
\(f_{i,j}=f_{i,j-1}+\sum_{k=1}^{i}{f_{k-1,j} \times f_{i-k,j - 1} \times p_{j}^{有几个长度为m的区间跨过了这个最大值}}\)
代码
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
const int M = 405 ;
const int mod = 998244353 ;
using namespace std ;
inline int read() {
char c = getchar() ; int x = 0 , w = 1 ;
while(c>'9'||c<'0') { if(c=='-') w = -1 ; c = getchar() ; }
while(c>='0'&&c<='9') { x = x*10+c-'0' ; c = getchar() ; }
return x*w ;
}
int n , m ;
int val[M][M] , f[M][M] ;
inline int T(int len , int k) {
int l = max(1 , k - m + 1) , r = min(len , k + m - 1) ;
return max(r - l - m + 2 , 0) ;
}
int main() {
n = read() ; m = read() ;
for(int i = 1 ; i <= n ; i ++) {
val[i][0] = 1 ; val[i][1] = read() ;
for(int j = 2 ; j <= n ; j ++)
val[i][j] = 1LL * val[i][j - 1] * val[i][1] % mod ;
}
for(int i = 0 ; i <= n ; i ++) f[0][i] = 1 ;
for(int i = 1 ; i <= n ; i ++)
for(int j = 1 ; j <= n ; j ++) {
f[i][j] = f[i][j - 1] ;
for(int k = 1 ; k <= i ; k ++)
f[i][j] = (f[i][j] + 1LL * f[k - 1][j] * f[i - k][j - 1] % mod * val[j][T(i , k)] % mod) % mod ;
}
printf("%d\n",f[n][n]) ;
return 0 ;
}
[UOJ311]积劳成疾的更多相关文章
- uoj311 【UNR #2】积劳成疾
传送门:http://uoj.ac/problem/311 [题解] 这题的期望dp好神奇啊(可能是我太菜了) 由于每个位置都完全一样,所以我们设$f_{i,j}$表示审了连续$i$个位置,最大值不超 ...
- 【UOJ#311】【UNR #2】积劳成疾(动态规划)
[UOJ#311][UNR #2]积劳成疾(动态规划) UOJ Solution 考虑最大值分治解决问题.每次枚举最大值所在的位置,强制不能跨过最大值,左右此时不会影响,可以分开考虑. 那么设\(f[ ...
- [UOJ UNR #2]积劳成疾
来自FallDream的博客,未经允许,请勿转载,谢谢. 传送门 区间最大值的题emmmm 想到构建笛卡尔树,这样自然就想到了一种dp f[i][j]表示大小为i的笛卡尔树,根的权值是j的答案. 转移 ...
- UOJ.311.[UNR#2]积劳成疾(DP)
UOJ 序列中的每个位置是等价的.直接令\(f[i][j]\)表示,\(i\)个数的序列,最大值不超过\(j\)的所有序列每个长为\(k\)的子区间最大值的乘积的和. 由\(j-1\)转移到\(j\) ...
- UOJ #311「UNR #2」积劳成疾
需要锻炼$ DP$能力 UOJ #311 题意 等概率产生一个长度为$ n$且每个数在[1,n]间随机的数列 定义其价值为所有长度为$ k$的连续子数列的最大值的乘积 给定$ n,k$求所有合法数列的 ...
- A. 【UNR #2】积劳成疾
链接:http://uoj.ac/contest/40/problem/311 题解: 一道很好的期望题吧 用dp的老思路,枚举最大值将序列分割 想到这个就很简单了 状态f[i][j]表示前i个,最大 ...
- 【uoj#311】[UNR #2]积劳成疾 dp
题目描述 一个长度为 $n$ 的序列,每个数在 $[1,n]$ 之间.给出 $m$ ,求所有序列的 $\prod_{i=1}^{n-m+1}(\text{Max}_{j=i}^{j+m-1}a[j]) ...
- uoj#311. 【UNR #2】积劳成疾(期望dp)
传送门 果然\(dp\)题就没咱啥事儿了 设\(f_{i,j}\)为长度为\(i\)的区间,所有元素的值不超过\(j\)的总的疲劳值 如果\(j\)没有出现过,那么\(f_{i,j}=f_{i,j-1 ...
- uoj#311 【UNR #2】积劳成疾
题目 考虑直接顺着从\(1\)填数填到\(n\)发现这是在胡扯 所以考虑一些奇诡的东西,譬如最后的答案长什么样子 显然某一种方案的贡献是一个\(\prod_{i=1}^nw_i^{t_i}\)状物,\ ...
随机推荐
- Spark SQL数据载入和保存实战
一:前置知识具体解释: Spark SQL重要是操作DataFrame,DataFrame本身提供了save和load的操作. Load:能够创建DataFrame. Save:把DataFrame中 ...
- [Angular] Communicate Between Components Using Angular Dependency Injection
Allow more than one child component of the same type. Allow child components to be placed within the ...
- [Tools] Create a Chrome Extension
Creating a Chrome extension requires a manifest.json file which defines how your extension will beha ...
- fedora下安装xdot和objgraph
前提:安装好了python 1.先下载xdot-0.6.tar.gz和objgraph-1.8.0-py27-none-any.whl,你也可以在官网上下载其他版本. 2.下载完后,解压. 3.打开终 ...
- 工作总结 使用html模板发邮件 前面空一大块
HTML邮件的本质其实是发送了一个html页面.邮件的空白必然是页面的空白,所以你要找到你发送邮件的html模板所在,然后去掉空白即可,如果这是一个公共文件,需要注意你往往用的只是你的部分,很大程度还 ...
- I2S简单学习
以下只是个人看法,有不妥之处,请批评指出. 参考资料:http://blog.csdn.net/ce123_zhouwei/article/details/6919954: 一.I2S接口简述 I²S ...
- [CSAPP]Bufbomb实验报告
Bufbomb实验报告 实验分析: level 0-3从test開始制运行,通过函数getbuf向外界读取一串内容(buf). Level 4 是通过參数-n,程序运行testn函数,调用getbuf ...
- 亿部书城李柯毅:Testin云測可大幅提升产品质量 值得推荐!
亿部书城李柯毅:Testin云測可大幅提升产品质量 值得推荐! 2014/10/13 · Testin · 开发人员訪谈 成立于2010年的亿部书城.其主营业务为移动增值业务及数字出版业务,由中央部委 ...
- Codeforces 768 E. Game of Stones 博弈DP
E. Game of Stones Sam has been teaching Jon the Game of Stones to sharpen his mind and help him de ...
- Latex 2: 解决WinEdt和TexWorks用久之后忽然不能正反向搜索
说明:下面说的WinEdt版本是10.1,TexWorks是texlive2016中自带的texworks,如果情况不一样请自行测试,原理一样 1.不能正向搜索: 解决:① 确定路径名是英文名(实际上 ...