题目传送门

 /*
题意:汉诺塔问题变形,多了第四个盘子可以放前k个塔,然后n-k个是经典的汉诺塔问题,问最少操作次数
递推+高精度+找规律:f[k]表示前k放在第四个盘子,g[n-k]表示经典三个盘子,2 ^ (n - k) - 1
所以f[n] = min (f[k] * 2 + g[n-k]),n<=10000,所要要用高精度,另外打表能看出规律
*/
/************************************************
* Author :Running_Time
* Created Time :2015-8-18 9:14:21
* File Name :UVA_10254.cpp
************************************************/ #include <cstdio>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <cstring>
#include <cmath>
#include <string>
#include <vector>
#include <queue>
#include <deque>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <bitset>
#include <cstdlib>
#include <ctime>
using namespace std; #define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1
typedef long long ll;
const int MAXN = + ;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + ; struct bign {
short s[MAXN] , len ;
bign () { memset ( s , , sizeof ( s ) ) ; len = ; }
bign operator = (const char *num) {
len = strlen ( num ) ;
for ( int i = ; i < len ; i ++ ) s[i] = num[len-i-] - '' ;
return *this ;
}
bign operator = (int num) {
char s[MAXN];
sprintf (s , "%d" , num);
*this = s ;
return *this ;
}
bign(const char *num) { *this = num ; }
bign(int num) { *this = num ; }
string str () const {
string res ;
res = "" ;
for (int i = ; i < len; i ++) res = (char) (s[i] + '') + res ;
if (res == "") res = '';
return res ;
}
bign operator + (const bign& b) const {
bign c ;
c.len = ;
for(int i = , g = ; g || i < max (len, b.len); i ++) {
int x = g ;
if (i < len) x += s[i] ;
if (i < b.len) x += b.s[i] ;
c.s[c.len++] = x % ;
g = x / ;
}
return c ;
}
void print() {
for(int i = len - ; i >= ; i --) printf("%hd", s[i]);
printf("\n");
}
}f[]; int main(void) { //UVA 10254 The Priest Mathematician
bign g = ; f[] = ;
for (int i=, j=; i<=; j++, g=g+g) {
for (int k=; k<=j && i<=; k++,i++) {
f[i] = f[i-] + g;
}
}
int n;
while (scanf ("%d", &n) == ) {
f[n].print ();
} return ;
}

递推+高精度+找规律 UVA 10254 The Priest Mathematician的更多相关文章

  1. POJ 2229 Sumsets(递推,找规律)

    构造,递推,因为划分是合并的逆过程,考虑怎么合并. 先把N展开成全部为N个1然后合并,因为和顺序无关,所以只和出现次数有关情况有点多并且为了避免重复,分类,C[i]表示序列中最大的数为2^i时的方案数 ...

  2. HDU 4291 A Short problem 短问题 (递推,找规律)

    题意: 给出递推式 g(n) = 3g(n - 1) + g(n - 2),且g(1) = 1,g(0) = 0.求g( g( g(n))) mod 109 + 7. 思路: 要求的g( g( g(n ...

  3. UVA 10254 - The Priest Mathematician (dp | 汉诺塔 | 找规律 | 大数)

    本文出自   http://blog.csdn.net/shuangde800 题目点击打开链接 题意: 汉诺塔游戏请看 百度百科 正常的汉诺塔游戏是只有3个柱子,并且如果有n个圆盘,至少需要2^n- ...

  4. PKU 2506 Tiling(递推+高精度||string应用)

    题目大意:原题链接有2×1和2×2两种规格的地板,现要拼2×n的形状,共有多少种情况,首先要做这道题目要先对递推有一定的了解.解题思路:1.假设我们已经铺好了2×(n-1)的情形,则要铺到2×n则只能 ...

  5. [luogu]P1066 2^k进制数[数学][递推][高精度]

    [luogu]P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻 ...

  6. BZOJ 1002 FJOI2007 轮状病毒 递推+高精度

    题目大意:轮状病毒基定义如图.求有多少n轮状病毒 这个递推实在是不会--所以我选择了打表找规律 首先执行下面程序 #include<cstdio> #include<cstring& ...

  7. 【BZOJ】1002: [FJOI2007]轮状病毒 递推+高精度

    1002: [FJOI2007]轮状病毒 Description 给定n(N<=100),编程计算有多少个不同的n轮状病毒. Input 第一行有1个正整数n. Output 将编程计算出的不同 ...

  8. [BZOJ1089][SCOI2003]严格n元树(递推+高精度)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1089 分析: 第一感觉可以用一个通式求出来,但是考虑一下很麻烦,不好搞的.很容易发现最 ...

  9. bzoj 1002 [FJOI2007]轮状病毒 高精度&&找规律&&基尔霍夫矩阵

    1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2234  Solved: 1227[Submit][Statu ...

随机推荐

  1. python解析xml文件之xml.etree.cElementTree和xml.etree.ElementTree区别和基本使用

    1.解析速度:ElementTree在 Python 标准库中有两种实现.一种是纯 Python 实现例如 xml.etree.ElementTree ,另外一种是速度快一点的 xml.etree.c ...

  2. CSS浮动通俗讲解

    首先要知道,div是块级元素,在页面中独占一行,自上而下排列,也就是传说中的流.如下图: 可以看出,即使div1的宽度很小,页面中一行可以容下div1和div2,div2也不会排在div1后边,因为d ...

  3. EJB学习(三)——java.lang.ClassCastException: com.sun.proxy.$Proxy2 cannot be cast to..

    在上一篇博客介绍了怎样使用使用Eclipse+JBOSS创建第一个EJB项目,在这期间就遇到一个错误: Exception in thread "main" java.lang.C ...

  4. python手记(53)

    import sys import pygame from pygame.locals import * import time import math pygame.init() screen=py ...

  5. HDU 2795 Billboard(宣传栏贴公告,线段树应用)

    HDU 2795 Billboard(宣传栏贴公告,线段树应用) ACM 题目地址:HDU 2795 Billboard 题意:  要在h*w宣传栏上贴公告,每条公告的高度都是为1的,并且每条公告都要 ...

  6. 【Mongodb教程 第六课 】MongoDB 插入文档

    insert() 方法 要插入数据到 MongoDB 集合,需要使用 MongoDB 的  insert() 或 save() 方法. 语法 insert() 命令的基本语法如下: >db.CO ...

  7. MySQL存储结构的使用

    前言 今天公司老大让我做一个MySQL的调研工作,是关于MySQL的存储结构的使用.这里我会通过3个样例来介绍一下MySQL中存储结构的使用过程,以及一些须要注意的点. 笔者环境 系统:Windows ...

  8. SQLServer删除数据库

    删除时提示: 网上找了一段: USE MASTER GO DECLARE @dbname SYSNAME SET @dbname = 'shujk' --这个是要删除的数据库库名 ) DECLARE ...

  9. spring boot实现文件上传下载

    spring boot 引入”约定大于配置“的概念,实现自动配置,节约了开发人员的开发成本,并且凭借其微服务架构的方式和较少的配置,一出来就占据大片开发人员的芳心.大部分的配置从开发人员可见变成了相对 ...

  10. solr 命令

    本文为转载内容:源地址:http://blog.csdn.net/matthewei6/article/details/50620600 查看帮助 bin/solr -help            ...