Lightoj 1054 - Efficient Pseudo Code
题目连接:
http://www.lightoj.com/volume_showproblem.php?problem=1054
题目大意:
给出n,m,问n^m的所有因子之和是多少?
解题思路:
补充知识:
1:对于一个数字n=p1^t1+p2^t2+p3^t3+.........+pn^tn。求n因子和等价于n所有因子的子集所对应值相加之和—(p1^0+p1^1+p1^2+......+p1^t1)*(p2^0+p2^1+......+p2^t2)*.....*(pn^0+pn^1+......+pn^tn).
2:等比数列求和公式:
3:除法取余:(a/b)%p == a%(b%p)/b%p;
a/b%p == a*b^(p-2)%p;(当p是素数) 证明:有费马小定理可知:p是素数,(b,p) = 1, b^(p-1)%p == 1,a/b%p == a/b*1%p == a/b*b^(p-1)% == a*b^(p-2)%p.
#include <bits/stdc++.h>
using namespace std; const int mod = ;
const int maxn = ;
typedef long long LL;
int isprime[maxn], prime[maxn*];
LL sum, k; void Isprime ()
{//筛选出需要的素数
int i, j;
for (i=, k=; i<; i++)
if (!prime[i])
{
isprime[k ++] = i;
for (j=i; j<; j+=i)
prime[j] = ;
}
// printf ("%d\n", k);
} LL Pow (LL x, LL y)
{//快速幂求x^y
LL num = ;
while (y)
{
if (y % )
num = (num * x) % mod;
x = (x * x) % mod;
y /= ;
}
return num;
}
LL solve (LL x, LL y)
{
LL num;
num = (Pow(x, y) - );
num = (num * Pow(x-, mod-)) % mod;
return (num + mod) % mod;
} int main ()
{
LL t, n, m, l = ;
Isprime ();
scanf ("%lld", &t);
while (t --)
{
scanf ("%lld %lld", &n, &m);
LL a, b, i;
i = ;
sum = ;
while (i < k)
{
if ( == n)
break;
a = b = ;//统计还有的素数因子和因子的个数
if (n % isprime[i] == )
{
a = isprime[i];
while (n % isprime[i] == )
{
b ++;
n /= isprime[i];
}
sum = (sum * solve(a, b*m+) ) % mod;
}
i ++; }
if (n != )
sum = (sum * solve(n, m+)) % mod;
printf ("Case %lld: %lld\n", ++l, sum);
}
return ;
}
Lightoj 1054 - Efficient Pseudo Code的更多相关文章
- 1054 - Efficient Pseudo Code
1054 - Efficient Pseudo Code PDF (English) Statistics Forum Time Limit: 1 second(s) Memory Limit: ...
- LightOj1054 - Efficient Pseudo Code ( 求n的m次方的因子和 )
题目链接:http://lightoj.com/volume_showproblem.php?problem=1054 题意:给你两个数n和m, 求n^m的所有因子和,结果对1000000007求余; ...
- Android Programming: Pushing the Limits -- Chapter 2: Efficient Java Code for Android
Android's Dalvik Java 与 Java SE 进行比较 Java代码优化 内存管理与分配 Android的多线程操作 Android’s Dalvik Java 与 Java SE ...
- 专题[vjudge] - 数论0.1
专题[vjudge] - 数论0.1 web-address : https://cn.vjudge.net/contest/176171 A - Mathematically Hard 题意就是定义 ...
- Oracle Applications Multiple Organizations Access Control for Custom Code
档 ID 420787.1 White Paper Oracle Applications Multiple Organizations Access Control for Custom Code ...
- PatentTips - Method and Apparatus to Support Virtualization with Code Patches
BACKGROUND As recognized in Revision 2.0 of the Intel® Virtualization Technology Specification for t ...
- CV code references
转:http://www.sigvc.org/bbs/thread-72-1-1.html 一.特征提取Feature Extraction: SIFT [1] [Demo program][SI ...
- Java基础常见英语词汇
Java基础常见英语词汇(共70个) ['ɔbdʒekt] ['ɔ:rientid]导向的 ['prəʊɡræmɪŋ]编程 OO: object ...
- IT软件开发常用英语词汇
Aabstract 抽象的abstract base class (ABC)抽象基类abstract class 抽象类abstraction 抽象.抽象物.抽象性access 存取.访问access ...
随机推荐
- 前端开发数据mock神器 -- xl_mock
1.为什么要实现数据 mock 要理解为什么要实现数据 mock,我们可以提供几个场景来解释, 1.现在的开发很多都是前后端分离的模式,前后端的工作是不同的,当我们前端界面已经完成,但是后端的接口迟迟 ...
- 【转】nginx 和 php-fpm 通信使用unix socket还是TCP,及其配置
原文: http://blog.csdn.net/pcyph/article/details/46513521 -------------------------------------------- ...
- 【转】Linux下添加新硬盘,分区及挂载
原文:http://blog.chinaunix.net/uid-25829053-id-3067619.html ------------------------------------------ ...
- OSX: 第三方部署Profile的方法和比較
眼下至少有三个第三方部署Profile的方法. 一个Profile Handler, 是利用Launchd对制定文件夹改变而激活的机制,把须要的profiles文件斗存放在制定目标机器的文件夹内,系统 ...
- webpack-Dependency Graph(依赖图)
依赖图(Dependency Graph) 任何时候,一个文件依赖于另一个文件,webpack 就把此视为文件之间有依赖关系. 这使得 webpack 可以接收非代码资源(non-code asset ...
- asp.net mvc的权限管理设计
现在集中展示用户-角色-权限管理的功能,因此,所有数据表一律简化处理. 1 后台管理效果 (1)角色管理 (2)权限管理 2 数据库设计(MSSQL) (1)用户表dbo.Users 项 类型 ...
- Sublime Text 3设置吊炸天PHP开发环境
@heiyeluren @created: 2016/5/31 @last modify: 2016/7/8 1. 下载安装Sublime Text 3 http://www.sublimetext. ...
- cygwin安装sshd服务(win7)Error installing a service: OpenSCManager: Win32 error 5:
Error installing a service: OpenSCManager: Win32 error 5: 出现这个问题的解决办法:win7系统管理员运行Cygwin软件 ...
- Class.forName() 详解
主要功能 Class.forName(xxx.xx.xx)返回的是一个类 Class.forName(xxx.xx.xx)的作用是要求JVM查找并加载指定的类, 也就是说JVM会执行该类的静态代码段 ...
- YTU 2875: 倒霉蛋买饭去
2875: 倒霉蛋买饭去 时间限制: 1 Sec 内存限制: 128 MB 提交: 22 解决: 17 题目描述 早春星期天的某个早晨,大风呼呼地刮.一个宿舍n个人,谁也不想起床买饭去.他们定了一 ...